Arsić, A., Nikić-Spiegel, I., 2022. The tail domain of neurofilament light chain accumulates in neuronal nuclei during oxidative injury. bioRxiv, 2022.2003.2003.481279. * uses Xona’s Silicone Devices (SND450) with primary mouse cortical neurons. https://doi.org/10.1101/2022.03.03.481279
Tags: cortical neurons, mouse, preprint, primary, SND450

Dumoulin, A., Wilson, N.H., Tucker, K.L., Stoeckli, E.T., 2022. A cell-autonomous role for primary cilia in long-range commissural axon guidance. bioRxiv, 2022.2008.2015.503894.  https://doi.org/10.1101/2022.08.15.503894
Tags: preprint

Salas-Lucia, F., Fekete, C., Sinkó, R., Egri, P., Rada, K., Ruska, Y., Bocco, B., Fonseca, T., Gereben, B., Bianco, A.C., 2022. A PATHWAY FOR T3 SIGNALING IN THE BRAIN TO IMPROVE THE VARIABLE EFFECTIVENESS OF THERAPY WITH L-T4. bioRxiv, 2022.2008.2017.504300. https://doi.org/10.1101/2022.08.17.504300

Kimourtzis, G., Rangwani, N., Jenkins, B.J., McNaughton, P.A., Raouf, R., 2022. A microfluidic-based model of nociceptor sensitization reveals a direct activation of sensory axons by prostaglandin E2. bioRxiv, * uses Xona’s Silicone Devices (SND150 and TCND500) with adult mouse DRG neurons. https://doi.org/10.1101/2022.03.18.484883
Tags: adult, DRG, mouse, SND150, TCND500

Shekari, A., Fahnestock, M., 2022. Retrograde axonal transport of Neurotrophins in basal forebrain cholinergic neurons, Axonal Transport: Methods and Protocols: Springer, pp. 249-270.  * uses XonaChips® (XC450) and ChipTrays with rat or mouse basal forebrain cholinergic neurons. **PROTOCOL** https://doi.org/10.1007/978-1-0716-1990-2_13
Tags: basal forebrain cholinergic neurons, ChipTray, mouse, protocol, rat, XC450

Danastas, K., Larsen, A., Jobson, S., Guo, G., Cunningham, A.L., Miranda-Saksena, M., 2022. Herpes simplex virus-1 utilizes the host actin cytoskeleton for its release from axonal growth cones. PLOS Pathogens 18, e1010264. * uses Xona’s Silicone Devices (SND450) with rat DRG neurons https://doi.org/10.1371/journal.ppat.1010264
Tags: DRG, rat, SND450

Lee, S., Park, D., Lim, C., Kim, J.-I., Min, K.-T., 2022. mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth. BMC Biology 20, 12.  * uses Xona’s Silicone Devices (RD150) https://doi.org/10.1186/s12915-021-01215-w
Tags: RD150

He, Q.-R., Cong, M., Yu, F.-H., Ji, Y.-H., Yu, S., Shi, H.-Y., Ding, F., 2022. Peripheral nerve fibroblasts secrete neurotrophic factors to promote axon growth of motoneurons. Neural Regeneration Research 17, 1833-1840. * uses Xona’s Silicone Devices (SND150) http://doi.org/10.4103/1673-5374.332159
Tags: SND150

Yin, Q., Sun, L., Cai, X., Lou, F., Sun, Y., Wang, B., Jiang, B., Bao, L., Li, X., Song, N., Tang, S., Bai, J., Wang, Z., Wu, Y., Zhou, H., Wang, H., Yu, B., Li, Q., Wang, H., 2022. Lidocaine Ameliorates Psoriasis by Obstructing Pathogenic CGRP Signaling-Mediated Sensory Neuron-Dendritic Cell Communication. Journal of Investigative Dermatology. https://doi.org/10.1016/j.jid.2022.01.002

Fornetti, E., Testa, S., De Paolis, F., Fuoco, C., Bernardini, S., Pozo Devoto, V., Stokin, G.B., Giannitelli, S.M., Rainer, A., Bigot, A., Zoccali, C., Baldi, J., Sandonà, D., Rizzi, R., Bearzi, C., Forte, G., Cannata, S., Gargioli, C., 2022. Dystrophic Muscle Affects Motoneuron Axon Outgrowth and NMJ Assembly. Advanced Materials Technologies n/a, 2101216.  * uses Xona’s Silicone Devices (RD450) with hiPSC-derived neurons and muscle-derived hMSCs. https://doi.org/10.1002/admt.202101216
Tags: hiPSC-derived, muscle-derived hMSCs, RD450

Lotlikar, M.S., Tarantino, M.B., Jorfi, M., Kovacs, D.M., Tanzi, R.E., Bhattacharyya, R., 2022. Microfluidic separation of axonal and somal compartments of neural progenitor cells differentiated in a 3D matrix. STAR Protocols 3, 101028. * uses XonaChips® (XC150, XC450) with human NPCs cultured in 3D using Matrigel® **PROTOCOL** https://doi.org/10.1016/j.xpro.2021.101028
Tags: 3D, human, Matrigel, NPC, protocol, XC150, XC450

Badiola-Mateos, Maider and Osaki, Tatsuya and Kamm, Roger D. and Samitier, Josep, In vitro Modelling of Human Healthy and ALS Proprioceptive Sensory Neurons in the Neuromuscular System. iScience http://dx.doi.org/10.2139/ssrn.4007585

Harbauer, A.B., Hees, J.T., Wanderoy, S., Segura, I., Gibbs, W., Cheng, Y., Ordonez, M., Cai, Z., Cartoni, R., Ashrafi, G., Wang, C., Perocchi, F., He, Z., Schwarz, T.L., 2022. Neuronal mitochondria transport Pink1 mRNA via synaptojanin 2 to support local mitophagy. Neuron. * uses Xona’s Silicone Devices (RD450) with rat hippocampal neurons http://doi.org/10.1016/j.neuron.2022.01.035
Tags: hippocampal neurons, rat, RD450

Huang, K.-C., Lou, S., Wang, C.-C., Thanawala, M.S., Turner, J., Fink, A., Ji, L., Sadaghiani, M., Huang, P., Dai, H., 2022. DeepNeurite™: Identification of neurites from non-specific binding of fluorescence probes through deep learning. FASEB BioAdvances 4, 170-179.  * uses XonaChips® (XC450) with adult mouse DRGs. https://doi.org/10.1096/fba.2021-00072
Tags: adult, DRG, mouse, XC450

Belamadni, A., Ren, D., Jayaraj, N., George, D., Miller, R., Mencihella, D., 2022. Integrating Sensory Neurons with Keratinocytes to Model Painful Diabetic Neuropathy on a Chip. The Journal of Pain 23, 10. https://doi.org/10.1016/j.jpain.2022.03.038 

Nandi, S., Ghosh, S., Garg, S., Sarkar, A., Ghosh, S., 2022. Brain-on-a-Chip, in: Mohanan, P.V. (Ed.), Microfluidics and Multi Organs on Chip. Singapore: Springer Nature Singapore, pp. 475-493. https://doi.org/10.1007/978-981-19-1379-2_21

Diaz-Amarilla, P., Arredondo, F., Dapueto, R., Boix, V., Carvalho, D., Santi, M.D., Vasilskis, E., Mesquita-Ribeiro, R., Dajas-Bailador, F., Abin-Carriquiry, J.A., Engler, H., Savio, E., 2022. Isolation and characterization of neurotoxic astrocytes derived from adult triple transgenic Alzheimer’s disease mice. Neurochemistry International 159, 105403. * uses Xona’s Silicone Devices (SND450). https://doi.org/10.1016/j.neuint.2022.105403
Tags: SND450

Turchetto, S., Le Bail, R., Broix, L., Nguyen, L., 2022. Molecular Analysis of Axonal Transport Dynamics upon Modulation of Microtubule Acetylation, in: Vagnoni, A. (Ed.), Axonal Transport: Methods and Protocols. New York, NY: Springer US, pp. 207-224. **PROTOCOL** https://doi.org/10.1007/978-1-0716-1990-2_10 
Tags: protocol

Neto, E., Leitão, L., Mateus, J.C., Sousa, D.M., Alves, C.J., Aroso, M., Monteiro, A.C., Conceição, F., Oreffo, R.O.C., West, J., Aguiar, P., Lamghari, M., 2022. Osteoclast-derived extracellular vesicles are implicated in sensory neurons sprouting through the activation of epidermal growth factor signaling. Cell & Bioscience 12, 127. https://doi.org/10.1186/s13578-022-00864-w 

Wang, Q., Gao, P., Liu, H., Chen, J., Tang, P., Zhao, S., Fan, J., Ren, Y., Yin, G., 2022. GIT1 Promotes Axonal Growth in an Inflammatory Environment by Promoting the Phosphorylation of MAP1B. Oxidative Medicine and Cellular Longevity 2022, 7474177. https://doi.org/10.1155/2022/7474177

Lie Pearl, P.Y., Yoo, L., Goulbourne Chris, N., Berg Martin, J., Stavrides, P., Huo, C., Lee, J.-H., Nixon Ralph, A., Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca2+ efflux and disrupted by PSEN1 loss of function. Science Advances 8, eabj5716. * uses Xona’s Silicone Devices (SND450) with mouse cortical neurons. https://doi.org/10.1126/sciadv.abj5716
Tags: cortical neurons, mouse, SND450

Muñoz-Lasso, D.C., Mollá, B., Sáenz-Gamboa, J.J., Insuasty, E., de la Iglesia-Vaya, M., Pook, M.A., Pallardó, F.V., Palau, F., Gonzalez-Cabo, P., 2022. Frataxin Deficit Leads to Reduced Dynamics of Growth Cones in Dorsal Root Ganglia Neurons of Friedreich’s Ataxia YG8sR Model: A Multilinear Algebra Approach. Front Mol Neurosci 15, 912780. https://doi.org/10.3389/fnmol.2022.912780
Tags: adult, DRG, mouse, SND150

Higerd-Rusli, G.P., Alsaloum, M., Tyagi, S., Sarveswaran, N., Estacion, M., Akin, E.J., Dib-Hajj, F.B., Liu, S., Sosniak, D., Zhao, P., Dib-Hajj, S.D., Waxman, S.G., 2022. Depolarizing NaV and Hyperpolarizing KV Channels Are Co-Trafficked in Sensory Neurons. The Journal of Neuroscience 42, 4794.   https://doi.org/10.1523/JNEUROSCI.0058-22.2022
Tags: DOC450, postnatal, rat, sensory neurons

Riewruja, K., Makarczyk, M., Alexander, P.G., Gao, Q., Goodman, S.B., Bunnell, B.A., Gold, M.S., Lin, H., 2022. Experimental models to study osteoarthritis pain and develop therapeutics. Osteoarthritis and Cartilage Open 4, 100306. https://doi.org/10.1016/j.ocarto.2022.100306

Fanizza, F., Campanile, M., Forloni, G., Giordano, C., Albani, D., 2022. Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders. Journal of Tissue Engineering 13, 20417314221095339. https://doi.org/10.1177/20417314221095339

Marrone, L., Marchi, P.M., Webster, C.P., Marroccella, R., Coldicott, I., Reynolds, S., Alves-Cruzeiro, J., Yang, Z.-L., Higginbottom, A., Khundadze, M., Shaw, P.J., Hübner, C.A., Livesey, M.R., Azzouz, M., 2022. SPG15 protein deficits are at the crossroads between lysosomal abnormalities, altered lipid metabolism and synaptic dysfunction. Human Molecular Genetics 31, 2693-2710. * uses Xona’s Silicone Devices (RD900) with mouse cortical neurons. https://doi.org/10.1093/hmg/ddac063
Tags: cortical neurons, mouse, RD900

Marchi, P.M., Marrone, L., Brasseur, L., Coens, A., Webster, C.P., Bousset, L., Destro, M., Smith, E.F., Walther, C.G., Alfred, V., Marroccella, R., Graves, E.J., Robinson, D., Shaw, A.C., Wan, L.M., Grierson, A.J., Ebbens, S.J., De Vos, K.J., Hautbergue, G.M., Ferraiuolo, L., Melki, R., Azzouz, M., 2022. C9ORF72-derived poly-GA DPRs undergo endocytic uptake in iAstrocytes and spread to motor neurons. Life Science Alliance 5, e202101276. * uses Xona’s Silicone Devices (RD450) with mouse cortical neurons. https://doi.org/10.26508/lsa.202101276
Tags: cortical neurons, mouse, RD450

Wang, T., Meunier, F.A., 2022. Live-Cell Superresolution Imaging of Retrograde Axonal Trafficking Using Pulse–Chase Labeling in Cultured Hippocampal Neurons, in: Shen, J. (Ed.), Membrane Trafficking: Methods and Protocols. New York, NY: Springer US, pp. 101-128. **PROTOCOL** 10.1007/978-1-0716-2209-4_9
Tags: hippocampal neurons, protocol, rat, RD450

Günther, R., Pal, A., Williams, C., Zimyanin, V.L., Liehr, M., von Neubeck, C., Krause, M., Parab, M.G., Petri, S., Kalmbach, N., Marklund, S.L., Sterneckert, J., Munch Andersen, P., Wegner, F., Gilthorpe, J.D., Hermann, A., 2022. Alteration of Mitochondrial Integrity as Upstream Event in the Pathophysiology of SOD1-ALS, Cells.  * uses Xona’s Silicone Devices (RD900) with hiPSC-derived motor neurons. https://doi.org/10.3390/cells11071246
Tags: ALS, hiPSC-derived motor neurons, RD900

Rodriguez, C.M., Bechek, S.C., Jones, G.L., Nakayama, L., Akiyama, T., Kim, G., Solow-Cordero, D.E., Strittmatter, S.M., Gitler, A.D., 2022. Targeting RTN4/NoGo-Receptor reduces levels of ALS protein ataxin-2. Cell Rep 41, 111505. * uses XonaChips® (XC450) with primary mouse cortical neurons https://doi.org/10.1016/j.celrep.2022.111505
Tags: cortical neurons, mouse, primary, XC450

Morikawa, M., Jerath, N.U., Ogawa, T., Morikawa, M., Tanaka, Y., Shy, M.E., Zuchner, S., Hirokawa, N., 2022. A neuropathy-associated kinesin KIF1A mutation hyper-stabilizes the motor-neck interaction during the ATPase cycle. The EMBO Journal 41, e108899. https://doi.org/10.15252/embj.2021108899
Tags: adult, DRG, mouse, SND450

Hansen, J., Siddiq, M.M., Yadaw, A.S., Tolentino, R.E., Rabinovich, V., Jayaraman, G., Jain, M.R., Liu, T., Li, H., Xiong, Y., Goldfarb, J., Iyengar, R., 2022. Whole cell response to receptor stimulation involves many deep and distributed subcellular biochemical processes. Journal of Biological Chemistry 298. * uses Xona’s Silicone Devices (SND150) with primary rat cortical neurons. https://doi.org/10.1016/j.jbc.2022.102325
Tags: cortical neurons, primary, rat, SND150

Hofmann, M., Biller, L., Michel, U., Bähr, M., Koch, J.C., 2022. Cytoskeletal assembly in axonal outgrowth and regeneration analyzed on the nanoscale. Sci Rep 12, 14387. * uses Xona’s Silicone Devices (SND450) with primary rat cortical neurons. https://doi.org/10.1038/s41598-022-18562-5
Tags: cortical neurons, primary, rat, SND450

Costamagna, D., Casters, V., Beltrà, M., Sampaolesi, M., Van Campenhout, A., Ortibus, E., Desloovere, K., Duelen, R., 2022. Autologous iPSC-Derived Human Neuromuscular Junction to Model the Pathophysiology of Hereditary Spastic Paraplegia, Cells. * uses XonaChips® (XC150) with human iPSC-differentiated lower motor neurons and myoblasts to create in vitro NMJs. https://doi.org/10.3390/cells11213351
Tags: hereditary spastic paraplegia, hiPSC-derived motor neurons, lower motor neurons, myoblasts, neuromuscular junction (NMJ), XC150

Pozo Devoto, V.M., Lacovich, V., Feole, M., Bhat, P., Chovan, J., Čarna, M., Onyango, I.G., Dragišić, N., Sűsserová, M., Barrios-Llerena, M.E., Stokin, G.B., 2022. Unraveling axonal mechanisms of traumatic brain injury. Acta Neuropathologica Communications 10, 140. * uses Xona’s Silicone Devices (uLP). https://doi.org/10.1186/s40478-022-01414-8
Tags: human, injury, microfluidic local perfusion device, uLP

Kulkarni, V.V., Stempel, M.H., Anand, A., Sidibe, D.K., Maday, S., 2022. Retrograde Axonal Autophagy and Endocytic Pathways Are Parallel and Separate in Neurons. The Journal of Neuroscience 42, 8524. https://doi.org/10.1523/JNEUROSCI.1292-22.2022
Tags: astrocytes, co-culture, cortical neurons, mouse, RD900

Zhu, B., Liu, Y., Hwang, S., Archuleta, K., Huang, H., Campos, A., Murad, R., Piña-Crespo, J., Xu, H., Huang, T.Y., 2022. Trem2 deletion enhances tau dispersion and pathology through microglia exosomes. Molecular Neurodegeneration 17, 58. * uses Xona’s Silicone (PDMS) Devices (TCND1000) with mouse cortical neurons. https://doi.org/10.1186/s13024-022-00562-8
Tags: cortical neurons, mouse, TCND1000

Collantes, T.M.A., Clark, C.M., Musarrat, F., Jambunathan, N., Jois, S., Kousoulas, K.G., 2022. Predicted Structure and Functions of the Prototypic Alphaherpesvirus Herpes Simplex Virus Type-1 UL37 Tegument Protein, Viruses. * uses Xona’s Silicone (PDMS) Devices (SND150). https://doi.org/10.3390/v14102189
Tags: SND150

Pourshafie, N., Masati, E., Lopez, A., Bunker, E., Snyder, A., Edwards, N.A., Winkelsas, A.M., Fischbeck, K.H., Grunseich, C., 2022. Altered SYNJ2BP-mediated mitochondrial-ER contacts in motor neuron disease. Neurobiol Dis 172, 105832. * uses XonaChips® (XC150) with human iPSC-differentiated motor neurons. https://doi.org/10.1016/j.nbd.2022.105832
Tags: hiPSC-derived motor neurons, human, motor neuron disease, XC150

Brás, I.C., Khani, M.H., Riedel, D., Parfentev, I., Gerhardt, E., van Riesen, C., Urlaub, H., Gollisch, T., Outeiro, T.F., 2022. Ectosomes and exosomes modulate neuronal spontaneous activity. Journal of Proteomics 269, 104721. * uses Xona’s Silicone Devices (TCND1000) with mouse cortical neurons https://doi.org/10.1016/j.jprot.2022.104721
Tags: cortical neurons, mouse, TCND1000

Nella, K.T., Norton, B.M., Chang, H.-T., Heuer, R.A., Roque, C.B., Matsuoka, A.J., 2022. Bridging the electrode–neuron gap: finite element modeling of in vitro neurotrophin gradients to optimize neuroelectronic interfaces in the inner ear. Acta Biomaterialia 151, 360-378. https://doi.org/10.1016/j.actbio.2022.08.035
Tags: hiPSC-derived, human, spiral ganglion neurons, XC450

XONA takes pride in offering comprehensive customer support.

CUSTOMER SERVICE HOURS

Mon – Fri
10 AM to 5 PM US Eastern

Xona Microfluidics® is closed all U.S. Holidays

Follow Xona

Contact


Email Xona

Direct
951-553-6400 Phone

International Customers: Please contact Xona through our online form or by email if you would like to arrange a time to speak by phone.

Subscribe To Our Newsletter

WordPress Image Lightbox Plugin