PUBLICATIONS with Xona Microfluidics® products

2024

Cong, M., X. Wu, L.-j. Zhu, G.-h. Gu, F. Ding, G.-c. Li and H.-y. Shi, 2024. Anisotropic microtopography surface of chitosan scaffold regulating skin precursor-derived schwann cells towards repair phenotype promotes neural regeneration. Regenerative Biomaterials: rbae005.https://doi.org/10.1093/rb/rbae005
Tags: injury, motor neurons, SND150

Moya-Alvarado, G., A. Aguirre-Soto and F. C. Bronfman, 2024. Multiple Labeling of Compartmentalized Cortical Neurons in Microfluidic Chambers. Bio Protoc 14(1): e4911. 10.21769/BioProtoc.4911
Tags: primary, RD450, SND450

Kakuda, K., K. Ikenaka, A. Kuma, J. Doi, C. Aguirre, N. Wang, T. Ajiki, C.-J. Choong, Y. Kimura, S. M. M. Badawy, T. Shima, S. Nakamura, K. Baba, S. Nagano, Y. Nagai, T. Yoshimori and H. Mochizuki, 2024. Lysophagy protects against propagation of α-synuclein aggregation through ruptured lysosomal vesicles. Proceedings of the National Academy of Sciences 121(1): e2312306120.https://doi.org/10.1073/pnas.2312306120
Tags: cortical neurons, mouse, SND450

Gu, M., X. Cheng, D. Zhang, W. Wu, Y. Cao and J. He, 2024. Chemokine platelet factor 4 accelerates peripheral nerve regeneration by regulating Schwann cell activation and axon elongation. Neural Regeneration Research 19(1). * uses SND150 with rat DRG neurons.http://10.4103/1673-5374.375346
Tags: DRG, injury, rat, SND150

Luczo, J. M., S. J. Edwards, K. Ardipradja, W. W. Suen, G. G. Au, G. A. Marsh, N. Godde, C. L. Rootes, J. Bingham and V. Sundaramoorthy, 2024. SARS-CoV and SARS-CoV-2 display limited neuronal infection and lack the ability to transmit within synaptically connected axons in stem cell–derived human neurons. Journal of NeuroVirology. * uses SND450s with human iPSC-derived NPCs.https://doi.org/10.1007/s13365-023-01187-3
Tags: hiPSC-derived, human, NPC, SND450

2023

Pisciottani, A., L. Croci, F. Lauria, C. Marullo, E. Savino, A. Ambrosi, P. Podini, M. Marchioretto, F. Casoni, O. Cremona, S. Taverna, A. Quattrini, J.-M. Cioni, G. Viero, F. Codazzi and G. G. Consalez, 2023. Neuronal models of TDP-43 proteinopathy display reduced axonal translation, increased oxidative stress, and defective exocytosis. Frontiers in Cellular Neuroscience 17.https://doi.org/10.3389/fncel.2023.1253543
Tags: cortical neurons, mouse, primary, SND450

Linares, G. R., Y. Li, W.-H. Chang, J. Rubin-Sigler, S. Mendonca, S. Hong, Y. Eoh, W. Guo, Y.-H. Huang, J. Chang, S. Tu, N. Dorjsuren, M. Santana, S.-T. Hung, J. Yu, J. Perez, M. Chickering, T.-Y. Cheng, C.-C. Huang, S.-J. J. Lee, H.-J. Deng, K.-T. Bach, K. Gray, V. Subramanyam, J. Rosenfeld, S. V. Alworth, H. Goodarzi and J. K. Ichida, 2023. SYF2 suppression mitigates neurodegeneration in models of diverse forms of ALS. Cell Stem Cell 30(2): 171-187.e114.https://doi.org/10.1016/j.stem.2023.01.005
Tags: axotomy, hiPSC-derived motor neurons, lentivirus, XC900

Dinamarca, M. C., L. Colombo, U. Brykczynska, A. Grimm, I. Fruh, I. Hossain, D. Gabriel, A. Eckert, M. Müller and E. Pecho-Vrieseling, 2023. Transmission-selective muscle pathology induced by the active propagation of mutant huntingtin across the human neuromuscular synapse. Front Mol Neurosci 16: 1287510.https://doi.org/10.3389%2Ffnmol.2023.1287510
Tags: iMD3, motor neurons, myotubes, XC450

Kropf, E., A. Shekari, S. Jaberi, A. Puri, C. Wu and M. Fahnestock, 2023. Age-induced nitrative stress decreases retrograde transport of proNGF via TrkA and increases proNGF retrograde transport and neurodegeneration via p75(NTR). Front Mol Neurosci 16: 1241420.https://doi.org/10.3389%2Ffnmol.2023.1241420
Tags: basal forebrain cholinergic neurons, primary, XC450

Samar, A., P. Melanie, N. Masahiro, S. Siyuan, C. Tania, L. W. Jeffrey and A. Liliana, 2023. Exosomes promote axon outgrowth and a polarized neuronal morphology by engaging the Wnt-Planar Cell Polarity pathway. bioRxiv: 2023.2010.2028.564542.https://doi.org/10.1101/2023.10.28.564542
Tags: cortical neurons, exosomes, preprint, primary, XC150

Paraskevi, T., S. Jolien, S. Wendy, S. Adria, D. Katarina Stoklund, C. Adriana Margarida Barbosa, P. Arun, H. Andreas, D. Philip Van, M. Thomas and B. Ludo Van Den, 2023. PP2A and GSK3 act as modifiers of FUS-ALS by modulating mitochondrial transport. bioRxiv: 2023.2008.2028.555106.https://doi.org/10.1101/2023.08.28.555106
Tags: hiPSC-derived motor neurons, myoblasts, neuromuscular junction (NMJ), preprint, XC150

Abdolhossein, Z., S. Saeede, B. Michael and S. Michael, 2023. Prevention of tau accumulation through inhibition of hnRNP R-dependent axonal <em>Mapt</em> mRNA localization. bioRxiv: 2023.2007.2019.549639.https://doi.org/10.1101/2023.07.19.549639
Tags: motor neurons, mouse, preprint, primary, SND150

Costamagna, D., V. Bastianini, M. Corvelyn, R. Duelen, J. Deschrevel, N. De Beukelaer, H. De Houwer, M. Sampaolesi, G. Gayan-Ramirez, A. V. Campenhout and K. Desloovere, 2023. Botulinum Toxin Treatment of Adult Muscle Stem Cells from Children with Cerebral Palsy and hiPSC-Derived Neuromuscular Junctions. Cells 12 DOI: 10.3390/cells12162072.https://doi.org/10.3390/cells12162072
Tags: hiPSC-derived, lower motor neurons, myoblasts, neuromuscular junction (NMJ), XC150

Van Breedam, E., T. Buyle-Huybrecht, J. Govaerts, P. Meysman, A. Bours, M. Boeren, J. Di Stefano, T. Caers, H. De Reu, L. Dirkx, J. Schippers, E. Bartholomeus, M. Lebrun, C. Sadzot-Delvaux, P. Rybakowska, M. E. Alarcón-Riquelme, C. Marañón, K. Laukens, P. Delputte, B. Ogunjimi and P. Ponsaerts, 2023. Lack of strong innate immune reactivity renders macrophages alone unable to control productive Varicella-Zoster Virus infection in an isogenic human iPSC-derived neuronal co-culture model. Frontiers in Immunology 14.https://doi.org/10.3389/fimmu.2023.1177245
Tags: co-cultures, hiPSC-derived, macrophages, XC150

Arun, P., G. Dajana, G. Hannes, Z. Vitaly, G. René, C. Marica, M. B. Tobias, S. Jared, S. Erik, P. Susanne, W. Florian, G. Stefan, P.-M. Francisco and H. Andreas, 2023. DJ-1 products glycolic acid and D-lactate restore deficient axonal trafficking and DNA damage response in FUS and SOD1-associated amyotrophic lateral sclerosis. bioRxiv: 2023.2009.2020.558653.10.1101/2023.09.20.558653
Tags: hiPSC-derived, hiPSC-derived motor neurons, motor neurons, preprint, RD900

Chen, C., R. Kumbhar, H. Wang, X. Yang, K. Gadhave, C. Rastegar, Y. Kimura, A. Behensky, S. Katakam, D. Jeong, L. Wang, A. Wang, R. Chen, S. Zhang, L. Jin, C. J. Workman, D. A. A. Vignali, O. Pletinkova, D. W. Nauen, P. C. Wong, J. C. Troncoso, M. Ying, V. L. Dawson, T. M. Dawson and X. Mao, 2023. Pathological Tau transmission initiated by binding lymphocyte-activation gene 3. bioRxiv.10.1101/2023.05.16.541015
Tags: mouse, preprint, primary, TCND1000

Danastas, K., G. Guo, J. Merjane, N. Hong, A. Larsen, M. Miranda-Saksena and L. Cunningham Anthony, 2023. Interferon inhibits the release of herpes simplex virus-1 from the axons of sensory neurons. mBio 14(5): e01818-01823.https://doi.org/10.1128/mbio.01818-23
Tags: primary, rat, SND450, viral infection

Smith, C. S., Z. Álvarez, R. Qiu, I. R. Sasselli, T. Clemons, J. A. Ortega, M. Vilela-Picos, H. Wellman, E. Kiskinis and S. I. Stupp, 2023. Enhanced Neuron Growth and Electrical Activity by a Supramolecular Netrin-1 Mimetic Nanofiber. ACS Nano 17(20): 19887-19902.https://doi.org/10.1021/acsnano.3c04572
Tags: XC450

Mutschler, C., S. V. Fazal, N. Schumacher, A. Loreto, M. P. Coleman and P. Arthur-Farraj, 2023. Schwann cells are axo-protective after injury irrespective of myelination status in mouse Schwann cell–neuron cocultures. Journal of Cell Science 136(18): jcs261557. * uses Xona's silicone devices (SND150) with mouse primary co-cultures of DRG and myelinating Schwann cells. https://doi.org/10.1242/jcs.261557
Tags: co-culture, DRG, mouse, myelination, primary, Schwann cells, SND150

Gu, M., X. Li, R. Wu, X. Cheng, S. Zhou and X. Gu, 2023. The Transcription Factor Ets1 Influences Axonal Growth via Regulation of Lcn2. Molecular Neurobiology.https://doi.org/10.1007/s12035-023-03616-0
Tags: embryonic, injury, rat, SND150, spinal cord neurons

Wu, Z., R. Zhu, Y. Yu, J. Wang, X. Hu, W. Xu, Y. Ren, C. Li, Z. Zeng, B. Ma, N. Xie, G. Lin, B. Ma, R. Zhu, K. Ye and L. Cheng, 2023. Spinal cord injury-activated C/EBPβ-AEP axis mediates cognitive impairment through APP C586/Tau N368 fragments spreading. Progress in Neurobiology 227: 102467.https://doi.org/10.1016/j.pneurobio.2023.102467
Tags: hippocampal neurons, primary, SND450

Van Dyck, A., L. Masin, S. Bergmans, G. Schevenels, A. Beckers, B. Vanhollebeke and L. Moons, 2023. A new microfluidic model to study dendritic remodeling and mitochondrial dynamics during axonal regeneration of adult zebrafish retinal neurons. Frontiers in Molecular Neuroscience 16.https://doi.org/10.3389/fnmol.2023.1196504
Tags: adult, SND450, SOC450, XC pre-coat, zebrafish

Brummer, T., M. Schillner, F. Steffen, F. Kneilmann, B. Wasser, T. Uphaus, F. Zipp and S. Bittner, 2023. Spatial transcriptomics and neurofilament light chain reveal changes in lesion patterns in murine autoimmune neuroinflammation. Journal of Neuroinflammation 20(1): 262. * uses XC450 XonaChips with microglia-axon co-cultures. https://doi.org/10.1186/s12974-023-02947-y
Tags: cortical neurons, microglia, primary, XC450

Boal, A. M., N. R. McGrady, X. Chamling, B. S. Kagitapalli, D. J. Zack, D. J. Calkins and M. L. Risner, 2023. Microfluidic Platforms Promote Polarization of Human-Derived Retinal Ganglion Cells That Model Axonopathy. Translational Vision Science & Technology 12(4): 1-1. * uses XC450 XonaChips with hESC-derived RGCs.https://doi.org/10.1167/tvst.12.4.1
Tags: hESC-derived, retinal ganglion cells, XC450

Salehi, S., A. Zare, G. Prezza, J. Bader, C. Schneider, U. Fischer, F. Meissner, M. Mann, M. Briese and M. Sendtner, 2023. Cytosolic Ptbp2 modulates axon growth in motoneurons through axonal localization and translation of Hnrnpr. Nature Communications 14(1): 4158. * uses IND150 and RD150 silicone devices with mouse motoneurons. https://doi.org/10.1038/s41467-023-39787-6
Tags: IND150, motor neurons, mouse, primary, RD450

Murata, H., Y. Yasui, K. Oiso, T. Ochi, N. Tomonobu, K.-i. Yamamoto, R. Kinoshita and M. Sakaguchi, 2023. STAT1/3 signaling suppresses axon degeneration and neuronal cell death through regulation of NAD+-biosynthetic and consuming enzymes. Cellular Signalling 108: 110717. * uses SND450 silicone devices with human iPSC-derived neurons https://doi.org/10.1016/j.cellsig.2023.110717
Tags: hiPSC-derived, human, SND450

Gatti, M., K. S. Dittlau, F. Beretti, L. Yedigaryan, M. Zavatti, P. Cortelli, C. Palumbo, E. Bertucci, L. Van Den Bosch, M. Sampaolesi and T. Maraldi, 2023. Human Neuromuscular Junction on a Chip: Impact of Amniotic Fluid Stem Cell Extracellular Vesicles on Muscle Atrophy and NMJ Integrity. International Journal of Molecular Sciences 24(5): 4944. * uses XC150 XonaChips with human-derived myotube and motor neuron co-cultures.https://doi.org/10.3390/ijms24054944
Tags: co-culture, hiPSC-derived motor neurons, human, motor neurons, myotubes, stem cells, XC150

Subramani, M., M. J. Van Hook and I. Ahmad, 2023. Reproducible generation of human retinal ganglion cells from banked retinal progenitor cells: analysis of target recognition and IGF-1-mediated axon regeneration. Front Cell Dev Biol 11: 1214104. * uses SND450 silicone devices with human RGC https://doi.org/10.3389%2Ffcell.2023.1214104
Tags: human, injury, retinal ganglion cells, SND450

Baker, C. A., S. Tyagi, G. P. Higerd-Rusli, S. Liu, P. Zhao, F. B. Dib-Hajj, S. G. Waxman and S. D. Dib-Hajj, 2023. Paclitaxel effects on axonal localization and vesicular trafficking of NaV1.8. Frontiers in Molecular Neuroscience 16. * Uses SND450 silicone devices with rat DRG neurons.https://doi.org/10.3389/fnmol.2023.1130123
Tags: DRG, rat, SND450

Siddiq, M. M., C. A. Toro, N. P. Johnson, J. Hansen, Y. Xiong, W. Mellado, R. E. Tolentino, K. Johnson, G. Jayaraman, Z. Suhail, L. Harlow, J. Dai, K. G. Beaumont, R. Sebra, D. E. Willis, C. P. Cardozo and R. Iyengar, 2023. Spinal cord injury regulates circular RNA expression in axons. Front Mol Neurosci 16: 1183315. * uses Xona's silicone devices (SND450) with primary cortical neuronshttps://doi.org/10.3389%2Ffnmol.2023.1183315
Tags: cortical neurons, injury, mouse, primary, rat, SND450

Kandhavivorn, W., H. Glaß, T. Herrmannsdörfer, T. M. Böckers, M. Uhlarz, J. Gronemann, R. H. W. Funk, J. Pietzsch, A. Pal and A. Hermann, 2023. Restoring Axonal Organelle Motility and Regeneration in Cultured FUS-ALS Motoneurons through Magnetic Field Stimulation Suggests an Alternative Therapeutic Approach. Cells 12 DOI: 10.3390/cells12111502. * uses Xona's silicone devices (RD900) with hiPSC-derived motor neurons.https://doi.org/10.3390/cells12111502
Tags: hiPSC-derived motor neurons, RD900

Chan, C., K. Ramhari, W. Hu, Y. Xiuli, G. Kundlik, R. Cyrus, K. Yasuyoshi, B. Adam, K. Sruthi, J. Deok, W. Liang, W. Anthony, C. Rong, Z. Shu, J. Lingtao, J. W. Creg, A. A. V. Dario, P. Olga, W. N. David, C. W. Philip, C. T. Juan, Y. Mingyao, L. D. Valina, M. D. Ted and M. Xiaobo, 2023. Pathological Tau transmission initiated by binding lymphocyte-activation gene 3. bioRxiv: 2023.2005.2016.541015. * uses Xona's silicone devices (TCND1000) with primary mouse cortical neurons. https://doi.org/10.1101/2023.05.16.541015
Tags: cortical neurons, mouse, preprint, primary, TCND1000

Clara, M., V. F. Shaline, S. Nathalie, L. Andrea, P. C. Michael and A.-F. Peter, 2023. Distinct axo-protective and axo-destructive roles for Schwann cells after injury in a novel compartmentalised mouse myelinating coculture system. bioRxiv: 2023.2005.2019.541371. * uses Xona's silicone devices (SND150) with mouse primary co-cultures of DRG and myelinating Schwann cells. https://doi.org/10.1101/2023.05.19.541371
Tags: co-culture, DRG, mouse, myelination, preprint, primary, Schwann cells, SND150

Alessandra, P., C. Laura, L. Fabio, M. Chiara, S. Elisa, A. Alessandro, P. Paola, M. Marta, C. Filippo, C. Ottavio, T. Stefano, Q. Angelo, C. Jean-Michel, V. Gabriella, C. Franca and G. G. Consalez, 2023. Two neuronal models of TDP-43 proteinopathy display reduced axonal translation, increased oxidative stress, and defective exocytosis. bioRxiv: 2023.2005.2017.540919. * uses Xona's silicone devices (SND450) with mouse cortical neurons. https://doi.org/10.1101/2023.05.17.540919
Tags: cortical neurons, mouse, preprint, primary, SND450

Aiken, J. and E. L. F. Holzbaur, 2023. Spastin locally amplifies microtubule dynamics to pattern the axon for presynaptic cargo delivery. bioRxiv. * uses XonaChip (XC450) with human iPSC-derived i3Neurons. https://doi.org/10.1101%2F2023.08.08.552320
Tags: hiPSC-derived, human, i3Neurons, preprint, XC450

Zimyanin, V. L., A.-M. Pielka, H. Glaß, J. Japtok, D. Großmann, M. Martin, A. Deussen, B. Szewczyk, C. Deppmann, E. Zunder, P. M. Andersen, T. M. Boeckers, J. Sterneckert, S. Redemann, A. Storch and A. Hermann, 2023. Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons. Cells 12 DOI: 10.3390/cells12101352. * uses Xona's silicone devices (RD900) with human iPSC-derived motoneurons.https://doi.org/10.3390/cells12101352
Tags: hiPSC-derived motor neurons, human, RD900

Cai, X., M. Han, F. Lou, Y. Sun, Q. Yin, L. Sun, Z. Wang, X. Li, H. Zhou, Z. Xu, H. Wang, S. Deng, X. Zheng, T. Zhang, Q. Li, B. Zhou and H. Wang, 2023. Tenascin C+ papillary fibroblasts facilitate neuro-immune interaction in a mouse model of psoriasis. Nature Communications 14(1): 2004. * uses XonaChips (XC150) with mouse DRG co-cultures.https://doi.org/10.1038/s41467-023-37798-x
Tags: co-culture, DRG, mouse, primary, XC150

Salas-Lucia, F., C. Fekete, R. Sinkó, P. Egri, K. Rada, Y. Ruska, B. Gereben and A. C. Bianco, 2023. Axonal T3 uptake and transport can trigger thyroid hormone signaling in the brain. eLife 12: e82683. * uses XonaChips (XC450) with primary mouse cortical neurons.https://doi.org/10.7554/eLife.82683
Tags: cortical neurons, mouse, primary, XC450

De Vincentiis, S.Baggiani, M.Merighi, F.Cappello, V.Lopane, J.Di Caprio, M.Costa, M.Mainardi, M.Onorati, M.Raffa, V.Low Forces Push the Maturation of Neural Precursors into NeuronsSmall 2023, 2205871. * uses Xona’s Silicone Devices (RD150) with hiPSC-differentiated spinal cord neurons.http://doi.org/10.1002/smll.202205871
Tags: hiPSC-derived, RD150, spinal cord neurons

Neel DV, Basu H, Gunner G, Bergstresser MD, Giadone RM, Chung H, Miao R, Chou V, Brody E, Jiang X, Lee E, Watts ME, Marques C, Held A, Wainger B, Lagier-Tourenne C, Zhang YJ, Petrucelli L, Young-Pearse TL, Chen-Plotkin AS, Rubin LL, Lieberman J, Chiu IM. Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration. Neuron. 2023 Apr 19;111(8):1222-1240.e9. * uses XonaChips® (XC450) and Xona’s Silicone Devices (RD450) using mouse cortical neurons.http://doi.org/10.1016/j.neuron.2023.02.019
Tags: cortical neurons, mouse, RD450, XC450

Xu, X., Zhang, H., Li, J., Chen, Y., Zhong, W., Chen, Y., Ma, X., 2023. Combination of EPC-EXs and NPC-EXs with miR-126 and miR-210 overexpression produces better therapeutic effects on ischemic stroke by protecting neurons through the Nox2/ROS and BDNF/TrkB pathways. Exp Neurol 359, 114235.https://doi.org/10.1016/j.expneurol.2022.114235

Kaniyappan, S., Balaji, V., Wang, Y., Mandelkow, E., 2023. Microfluidic Chamber Technology to Study Missorting and Spreading of Tau Protein in Alzheimer’s Disease, in: Cieplak, A.S. (Ed.), Protein Aggregation: Methods and Protocols. New York, NY: Springer US, pp. 111-123. * uses Xona’s Silicone (PDMS) Devices (RD150, TCND1000) with primary rat cortical or hippocampal neurons **PROTOCOL**https://doi.org/10.1007/978-1-0716-2597-2_9
Tags: cortical neurons, hippocampal neurons, primary, protocol, rat, RD150, TCND1000

Higerd-Rusli, G.P., Tyagi, S., Baker, C.A., Liu, S., Dib-Hajj, F.B., Dib-Hajj, S.D., Waxman, S.G., 2023. Inflammation differentially controls transport of depolarizing Nav versus hyperpolarizing Kv channels to drive rat nociceptor activity. Proceedings of the National Academy of Sciences 120, e2215417120.https://www.pnas.org/doi/10.1073/pnas.2215417120
Tags: basic research, DOC450, postnatal, rat

Stoklund Dittlau, K., Terrie, L., Baatsen, P., Kerstens, A., De Swert, L., Janky, R.s., Corthout, N., Masrori, P., Van Damme, P., Hyttel, P., Meyer, M., Thorrez, L., Freude, K., Van Den Bosch, L., 2023. FUS-ALS hiPSC-derived astrocytes impair human motor units through both gain-of-toxicity and loss-of-support mechanisms. Molecular Neurodegeneration 18, 5. * uses XonaChips® (XC150) with co-culture of hiPSC-derived motor neurons and astrocytes with human primary myoblasts.https://doi.org/10.1186/s13024-022-00591-3
Tags: astrocytes, co-culture, hiPSC-derived motor neurons, myoblasts, XC150

Yang, X., Tohda, C., 2023. Axonal Regeneration Mediated by a Novel Axonal Guidance Pair, Galectin-1 and Secernin-1. Mol Neurobiol 60, 1250-1266.https://doi.org/10.1007/s12035-022-03125-6
Tags: hippocampal neurons, primary

Falconieri, A., De Vincentiis, S., Cappello, V., Convertino, D., Das, R., Ghignoli, S., Figoli, S., Luin, S., Català-Castro, F., Marchetti, L., Borello, U., Krieg, M., Raffa, V., 2023. Axonal plasticity in response to active forces generated through magnetic nano-pulling. Cell Reports 42, 111912. * uses Xona’s Silicone Devices (RD150) with primary mouse hippocampal and DRG neurons.https://doi.org/10.1016/j.celrep.2022.111912
Tags: DRG, hippocampal neurons, mouse, RD150

Hennlein, L., Ghanawi, H., Gerstner, F., Palominos García, E., Yildirim, E., Saal-Bauernschubert, L., Moradi, M., Deng, C., Klein, T., Appenzeller, S., Sauer, M., Briese, M., Simon, C., Sendtner, M., Jablonka, S., 2023. Plastin 3 rescues cell surface translocation and activation of TrkB in spinal muscular atrophy. Journal of Cell Biology 222, e202204113.https://doi.org/10.1083/jcb.202204113
Tags: motor neurons, mouse, primary, SND150, spinal muscular atrophy

Vevea, J.D., Chapman, E.R., 2023. Mitofusin 2 sustains the axonal mitochondrial network to support presynaptic Ca2+ homeostasis and the synaptic vesicle cycle in rat hippocampal axons. The Journal of Neuroscience, JN-RM-1356-1322.https://doi.org/10.1523/JNEUROSCI.1356-22.2023
Tags: basic research, hippocampal neurons, rat

Limone, F., Guerra San Juan, I., Mitchell, J.M., Smith, J.L.M., Raghunathan, K., Meyer, D., Ghosh, S.D., Couto, A., Klim, J.R., Joseph, B.J., Gold, J., Mello, C.J., Nemesh, J., Smith, B.M., Verhage, M., McCarroll, S.A., Pietiläinen, O., Nehme, R., Eggan, K., 2023. Efficient generation of lower induced motor neurons by coupling Ngn2 expression with developmental cues. Cell Reports 42, 111896. * uses XonaChips® (XC450) with co-culture of human lower induced motor neurons (liMNs) and primary murine myoblasts.https://doi.org/10.1016/j.celrep.2022.111896
Tags: co-culture, hiPSC-derived motor neurons, myoblasts, XC450

Higerd-Rusli, G.P., Tyagi, S., Liu, S., Dib-Hajj, F.B., Waxman, S.G., Dib-Hajj, S.D., 2023. The fates of internalized NaV1.7 channels in sensory neurons: Retrograde cotransport with other ion channels, axon-specific recycling, and degradation. Journal of Biological Chemistry 299 * uses Xona’s Silicone Devices (DOC450) with primary rat DRGs (P2-4).https://doi.org/10.1016/j.jbc.2022.102816
Tags: basic research, DOC450, postnatal, rat

Antoniou, A., Auderset, L., Kaurani, L., Sebastian, E., Zeng, Y., Allahham, M., Cases-Cunillera, S., Schoch, S., Gründemann, J., Fischer, A., Schneider, A., 2023. Neuronal extracellular vesicles and associated microRNAs induce circuit connectivity downstream BDNF. Cell Reports 42 * uses XonaChips® (XC150) and Silicone Devices (TCND500) with mouse cortical and hippocampal neurons (E16).https://doi.org/10.1016/j.celrep.2023.112063
Tags: cortical neurons, hippocampal neurons, mouse, TCND500, XC150

Hanč, P., Gonzalez, R.J., Mazo, I.B., Wang, Y., Lambert, T., Ortiz, G., Miller, E.W., von Andrian, U.H., Multimodal control of dendritic cell functions by nociceptors. Science 379, eabm5658. * co-culture of nociceptors and dendritic cellshttps://doi.org/10.1126/science.abm5658
Tags: co-culture, dendritic cells, mouse, nociceptors, pain

Subramani, M., Hook, M.V., Rajamoorthy, M., Qiu, F., Ahmad, I., 2023. Human Retinal Ganglion Cells Respond to Evolutionarily Conserved Chemotropic Cues for Intra Retinal Guidance and Regeneration. bioRxiv, 2023.2002.2001.526677 * uses Xona’s Silicone Devices (SND450) with human retinal ganglion cells and rat retinal cells. https://doi.org/10.1101/2023.02.01.526677
Tags: human, preprint, rat, retinal ganglion cells, SND450

2022

Arsić, A., Nikić-Spiegel, I., 2022. The tail domain of neurofilament light chain accumulates in neuronal nuclei during oxidative injury. bioRxiv, 2022.2003.2003.481279. * uses Xona’s Silicone Devices (SND450) with primary mouse cortical neurons.https://doi.org/10.1101/2022.03.03.481279
Tags: cortical neurons, mouse, preprint, primary, SND450

Dumoulin, A., Wilson, N.H., Tucker, K.L., Stoeckli, E.T., 2022. A cell-autonomous role for primary cilia in long-range commissural axon guidance. bioRxiv, 2022.2008.2015.503894.  https://doi.org/10.1101/2022.08.15.503894
Tags: preprint

Salas-Lucia, F., Fekete, C., Sinkó, R., Egri, P., Rada, K., Ruska, Y., Bocco, B., Fonseca, T., Gereben, B., Bianco, A.C., 2022. A PATHWAY FOR T3 SIGNALING IN THE BRAIN TO IMPROVE THE VARIABLE EFFECTIVENESS OF THERAPY WITH L-T4. bioRxiv, 2022.2008.2017.504300.https://doi.org/10.1101/2022.08.17.504300

Kimourtzis, G., Rangwani, N., Jenkins, B.J., McNaughton, P.A., Raouf, R., 2022. A microfluidic-based model of nociceptor sensitization reveals a direct activation of sensory axons by prostaglandin E2. bioRxiv, * uses Xona’s Silicone Devices (SND150 and TCND500) with adult mouse DRG neurons.https://doi.org/10.1101/2022.03.18.484883
Tags: adult, DRG, mouse, SND150, TCND500

Shekari, A., Fahnestock, M., 2022. Retrograde axonal transport of Neurotrophins in basal forebrain cholinergic neurons, Axonal Transport: Methods and Protocols: Springer, pp. 249-270.  * uses XonaChips® (XC450) and ChipTrays with rat or mouse basal forebrain cholinergic neurons. **PROTOCOL**https://doi.org/10.1007/978-1-0716-1990-2_13
Tags: basal forebrain cholinergic neurons, ChipTray, mouse, protocol, rat, XC450

Danastas, K., Larsen, A., Jobson, S., Guo, G., Cunningham, A.L., Miranda-Saksena, M., 2022. Herpes simplex virus-1 utilizes the host actin cytoskeleton for its release from axonal growth cones. PLOS Pathogens 18, e1010264. * uses Xona’s Silicone Devices (SND450) with rat DRG neurons https://doi.org/10.1371/journal.ppat.1010264
Tags: DRG, rat, SND450

Lee, S., Park, D., Lim, C., Kim, J.-I., Min, K.-T., 2022. mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth. BMC Biology 20, 12.  * uses Xona’s Silicone Devices (RD150) https://doi.org/10.1186/s12915-021-01215-w
Tags: RD150

He, Q.-R., Cong, M., Yu, F.-H., Ji, Y.-H., Yu, S., Shi, H.-Y., Ding, F., 2022. Peripheral nerve fibroblasts secrete neurotrophic factors to promote axon growth of motoneurons. Neural Regeneration Research 17, 1833-1840. * uses Xona’s Silicone Devices (SND150) http://doi.org/10.4103/1673-5374.332159
Tags: SND150

Yin, Q., Sun, L., Cai, X., Lou, F., Sun, Y., Wang, B., Jiang, B., Bao, L., Li, X., Song, N., Tang, S., Bai, J., Wang, Z., Wu, Y., Zhou, H., Wang, H., Yu, B., Li, Q., Wang, H., 2022. Lidocaine Ameliorates Psoriasis by Obstructing Pathogenic CGRP Signaling-Mediated Sensory Neuron-Dendritic Cell Communication. Journal of Investigative Dermatology. https://doi.org/10.1016/j.jid.2022.01.002

Fornetti, E., Testa, S., De Paolis, F., Fuoco, C., Bernardini, S., Pozo Devoto, V., Stokin, G.B., Giannitelli, S.M., Rainer, A., Bigot, A., Zoccali, C., Baldi, J., Sandonà, D., Rizzi, R., Bearzi, C., Forte, G., Cannata, S., Gargioli, C., 2022. Dystrophic Muscle Affects Motoneuron Axon Outgrowth and NMJ Assembly. Advanced Materials Technologies n/a, 2101216.  * uses Xona’s Silicone Devices (RD450) with hiPSC-derived neurons and muscle-derived hMSCs.https://doi.org/10.1002/admt.202101216
Tags: hiPSC-derived, muscle-derived hMSCs, RD450

Lotlikar, M.S., Tarantino, M.B., Jorfi, M., Kovacs, D.M., Tanzi, R.E., Bhattacharyya, R., 2022. Microfluidic separation of axonal and somal compartments of neural progenitor cells differentiated in a 3D matrix. STAR Protocols 3, 101028. * uses XonaChips® (XC150, XC450) with human NPCs cultured in 3D using Matrigel® **PROTOCOL**https://doi.org/10.1016/j.xpro.2021.101028
Tags: 3D, human, Matrigel, NPC, protocol, XC150, XC450

Badiola-Mateos, Maider and Osaki, Tatsuya and Kamm, Roger D. and Samitier, Josep, In vitro Modelling of Human Healthy and ALS Proprioceptive Sensory Neurons in the Neuromuscular System. iSciencehttp://dx.doi.org/10.2139/ssrn.4007585

Harbauer, A.B., Hees, J.T., Wanderoy, S., Segura, I., Gibbs, W., Cheng, Y., Ordonez, M., Cai, Z., Cartoni, R., Ashrafi, G., Wang, C., Perocchi, F., He, Z., Schwarz, T.L., 2022. Neuronal mitochondria transport Pink1 mRNA via synaptojanin 2 to support local mitophagy. Neuron. * uses Xona’s Silicone Devices (RD450) with rat hippocampal neuronshttp://doi.org/10.1016/j.neuron.2022.01.035
Tags: hippocampal neurons, rat, RD450

Huang, K.-C., Lou, S., Wang, C.-C., Thanawala, M.S., Turner, J., Fink, A., Ji, L., Sadaghiani, M., Huang, P., Dai, H., 2022. DeepNeurite™: Identification of neurites from non-specific binding of fluorescence probes through deep learning. FASEB BioAdvances 4, 170-179.  * uses XonaChips® (XC450) with adult mouse DRGs.https://doi.org/10.1096/fba.2021-00072
Tags: adult, DRG, mouse, XC450

Belamadni, A., Ren, D., Jayaraj, N., George, D., Miller, R., Mencihella, D., 2022. Integrating Sensory Neurons with Keratinocytes to Model Painful Diabetic Neuropathy on a Chip. The Journal of Pain 23, 10.https://doi.org/10.1016/j.jpain.2022.03.038 

Nandi, S., Ghosh, S., Garg, S., Sarkar, A., Ghosh, S., 2022. Brain-on-a-Chip, in: Mohanan, P.V. (Ed.), Microfluidics and Multi Organs on Chip. Singapore: Springer Nature Singapore, pp. 475-493.https://doi.org/10.1007/978-981-19-1379-2_21

Diaz-Amarilla, P., Arredondo, F., Dapueto, R., Boix, V., Carvalho, D., Santi, M.D., Vasilskis, E., Mesquita-Ribeiro, R., Dajas-Bailador, F., Abin-Carriquiry, J.A., Engler, H., Savio, E., 2022. Isolation and characterization of neurotoxic astrocytes derived from adult triple transgenic Alzheimer’s disease mice. Neurochemistry International 159, 105403. * uses Xona’s Silicone Devices (SND450).https://doi.org/10.1016/j.neuint.2022.105403
Tags: SND450

Turchetto, S., Le Bail, R., Broix, L., Nguyen, L., 2022. Molecular Analysis of Axonal Transport Dynamics upon Modulation of Microtubule Acetylation, in: Vagnoni, A. (Ed.), Axonal Transport: Methods and Protocols. New York, NY: Springer US, pp. 207-224. **PROTOCOL**https://doi.org/10.1007/978-1-0716-1990-2_10 
Tags: protocol

Neto, E., Leitão, L., Mateus, J.C., Sousa, D.M., Alves, C.J., Aroso, M., Monteiro, A.C., Conceição, F., Oreffo, R.O.C., West, J., Aguiar, P., Lamghari, M., 2022. Osteoclast-derived extracellular vesicles are implicated in sensory neurons sprouting through the activation of epidermal growth factor signaling. Cell & Bioscience 12, 127.https://doi.org/10.1186/s13578-022-00864-w 

Wang, Q., Gao, P., Liu, H., Chen, J., Tang, P., Zhao, S., Fan, J., Ren, Y., Yin, G., 2022. GIT1 Promotes Axonal Growth in an Inflammatory Environment by Promoting the Phosphorylation of MAP1B. Oxidative Medicine and Cellular Longevity 2022, 7474177.https://doi.org/10.1155/2022/7474177

Lie Pearl, P.Y., Yoo, L., Goulbourne Chris, N., Berg Martin, J., Stavrides, P., Huo, C., Lee, J.-H., Nixon Ralph, A., Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca2+ efflux and disrupted by PSEN1 loss of function. Science Advances 8, eabj5716. * uses Xona’s Silicone Devices (SND450) with mouse cortical neurons.https://doi.org/10.1126/sciadv.abj5716
Tags: cortical neurons, mouse, SND450

Muñoz-Lasso, D.C., Mollá, B., Sáenz-Gamboa, J.J., Insuasty, E., de la Iglesia-Vaya, M., Pook, M.A., Pallardó, F.V., Palau, F., Gonzalez-Cabo, P., 2022. Frataxin Deficit Leads to Reduced Dynamics of Growth Cones in Dorsal Root Ganglia Neurons of Friedreich’s Ataxia YG8sR Model: A Multilinear Algebra Approach. Front Mol Neurosci 15, 912780.https://doi.org/10.3389/fnmol.2022.912780
Tags: adult, DRG, mouse, SND150

Higerd-Rusli, G.P., Alsaloum, M., Tyagi, S., Sarveswaran, N., Estacion, M., Akin, E.J., Dib-Hajj, F.B., Liu, S., Sosniak, D., Zhao, P., Dib-Hajj, S.D., Waxman, S.G., 2022. Depolarizing NaV and Hyperpolarizing KV Channels Are Co-Trafficked in Sensory Neurons. The Journal of Neuroscience 42, 4794.  https://doi.org/10.1523/JNEUROSCI.0058-22.2022
Tags: DOC450, postnatal, rat, sensory neurons

Riewruja, K., Makarczyk, M., Alexander, P.G., Gao, Q., Goodman, S.B., Bunnell, B.A., Gold, M.S., Lin, H., 2022. Experimental models to study osteoarthritis pain and develop therapeutics. Osteoarthritis and Cartilage Open 4, 100306.https://doi.org/10.1016/j.ocarto.2022.100306

Fanizza, F., Campanile, M., Forloni, G., Giordano, C., Albani, D., 2022. Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders. Journal of Tissue Engineering 13, 20417314221095339.https://doi.org/10.1177/20417314221095339

Marrone, L., Marchi, P.M., Webster, C.P., Marroccella, R., Coldicott, I., Reynolds, S., Alves-Cruzeiro, J., Yang, Z.-L., Higginbottom, A., Khundadze, M., Shaw, P.J., Hübner, C.A., Livesey, M.R., Azzouz, M., 2022. SPG15 protein deficits are at the crossroads between lysosomal abnormalities, altered lipid metabolism and synaptic dysfunction. Human Molecular Genetics 31, 2693-2710. * uses Xona’s Silicone Devices (RD900) with mouse cortical neurons.https://doi.org/10.1093/hmg/ddac063
Tags: cortical neurons, mouse, RD900

Marchi, P.M., Marrone, L., Brasseur, L., Coens, A., Webster, C.P., Bousset, L., Destro, M., Smith, E.F., Walther, C.G., Alfred, V., Marroccella, R., Graves, E.J., Robinson, D., Shaw, A.C., Wan, L.M., Grierson, A.J., Ebbens, S.J., De Vos, K.J., Hautbergue, G.M., Ferraiuolo, L., Melki, R., Azzouz, M., 2022. C9ORF72-derived poly-GA DPRs undergo endocytic uptake in iAstrocytes and spread to motor neurons. Life Science Alliance 5, e202101276. * uses Xona’s Silicone Devices (RD450) with mouse cortical neurons.https://doi.org/10.26508/lsa.202101276
Tags: cortical neurons, mouse, RD450

Wang, T., Meunier, F.A., 2022. Live-Cell Superresolution Imaging of Retrograde Axonal Trafficking Using Pulse–Chase Labeling in Cultured Hippocampal Neurons, in: Shen, J. (Ed.), Membrane Trafficking: Methods and Protocols. New York, NY: Springer US, pp. 101-128. **PROTOCOL**10.1007/978-1-0716-2209-4_9
Tags: hippocampal neurons, protocol, rat, RD450

Günther, R., Pal, A., Williams, C., Zimyanin, V.L., Liehr, M., von Neubeck, C., Krause, M., Parab, M.G., Petri, S., Kalmbach, N., Marklund, S.L., Sterneckert, J., Munch Andersen, P., Wegner, F., Gilthorpe, J.D., Hermann, A., 2022. Alteration of Mitochondrial Integrity as Upstream Event in the Pathophysiology of SOD1-ALS, Cells.  * uses Xona’s Silicone Devices (RD900) with hiPSC-derived motor neurons.https://doi.org/10.3390/cells11071246
Tags: ALS, hiPSC-derived motor neurons, RD900

Rodriguez, C.M., Bechek, S.C., Jones, G.L., Nakayama, L., Akiyama, T., Kim, G., Solow-Cordero, D.E., Strittmatter, S.M., Gitler, A.D., 2022. Targeting RTN4/NoGo-Receptor reduces levels of ALS protein ataxin-2. Cell Rep 41, 111505. * uses XonaChips® (XC450) with primary mouse cortical neuronshttps://doi.org/10.1016/j.celrep.2022.111505
Tags: cortical neurons, mouse, primary, XC450

Morikawa, M., Jerath, N.U., Ogawa, T., Morikawa, M., Tanaka, Y., Shy, M.E., Zuchner, S., Hirokawa, N., 2022. A neuropathy-associated kinesin KIF1A mutation hyper-stabilizes the motor-neck interaction during the ATPase cycle. The EMBO Journal 41, e108899.https://doi.org/10.15252/embj.2021108899
Tags: adult, DRG, mouse, SND450

Hansen, J., Siddiq, M.M., Yadaw, A.S., Tolentino, R.E., Rabinovich, V., Jayaraman, G., Jain, M.R., Liu, T., Li, H., Xiong, Y., Goldfarb, J., Iyengar, R., 2022. Whole cell response to receptor stimulation involves many deep and distributed subcellular biochemical processes. Journal of Biological Chemistry 298. * uses Xona’s Silicone Devices (SND150) with primary rat cortical neurons.https://doi.org/10.1016/j.jbc.2022.102325
Tags: cortical neurons, primary, rat, SND150

Hofmann, M., Biller, L., Michel, U., Bähr, M., Koch, J.C., 2022. Cytoskeletal assembly in axonal outgrowth and regeneration analyzed on the nanoscale. Sci Rep 12, 14387. * uses Xona’s Silicone Devices (SND450) with primary rat cortical neurons.https://doi.org/10.1038/s41598-022-18562-5
Tags: cortical neurons, primary, rat, SND450

Costamagna, D., Casters, V., Beltrà, M., Sampaolesi, M., Van Campenhout, A., Ortibus, E., Desloovere, K., Duelen, R., 2022. Autologous iPSC-Derived Human Neuromuscular Junction to Model the Pathophysiology of Hereditary Spastic Paraplegia, Cells. * uses XonaChips® (XC150) with human iPSC-differentiated lower motor neurons and myoblasts to create in vitro NMJs.https://doi.org/10.3390/cells11213351
Tags: hereditary spastic paraplegia, hiPSC-derived motor neurons, lower motor neurons, myoblasts, neuromuscular junction (NMJ), XC150

Pozo Devoto, V.M., Lacovich, V., Feole, M., Bhat, P., Chovan, J., Čarna, M., Onyango, I.G., Dragišić, N., Sűsserová, M., Barrios-Llerena, M.E., Stokin, G.B., 2022. Unraveling axonal mechanisms of traumatic brain injury. Acta Neuropathologica Communications 10, 140. * uses Xona’s Silicone Devices (uLP).https://doi.org/10.1186/s40478-022-01414-8
Tags: human, injury, microfluidic local perfusion device, uLP

Kulkarni, V.V., Stempel, M.H., Anand, A., Sidibe, D.K., Maday, S., 2022. Retrograde Axonal Autophagy and Endocytic Pathways Are Parallel and Separate in Neurons. The Journal of Neuroscience 42, 8524.https://doi.org/10.1523/JNEUROSCI.1292-22.2022
Tags: astrocytes, co-culture, cortical neurons, mouse, RD900

Zhu, B., Liu, Y., Hwang, S., Archuleta, K., Huang, H., Campos, A., Murad, R., Piña-Crespo, J., Xu, H., Huang, T.Y., 2022. Trem2 deletion enhances tau dispersion and pathology through microglia exosomes. Molecular Neurodegeneration 17, 58. * uses Xona’s Silicone (PDMS) Devices (TCND1000) with mouse cortical neurons.https://doi.org/10.1186/s13024-022-00562-8
Tags: cortical neurons, mouse, TCND1000

Collantes, T.M.A., Clark, C.M., Musarrat, F., Jambunathan, N., Jois, S., Kousoulas, K.G., 2022. Predicted Structure and Functions of the Prototypic Alphaherpesvirus Herpes Simplex Virus Type-1 UL37 Tegument Protein, Viruses. * uses Xona’s Silicone (PDMS) Devices (SND150).https://doi.org/10.3390/v14102189
Tags: SND150

Pourshafie, N., Masati, E., Lopez, A., Bunker, E., Snyder, A., Edwards, N.A., Winkelsas, A.M., Fischbeck, K.H., Grunseich, C., 2022. Altered SYNJ2BP-mediated mitochondrial-ER contacts in motor neuron disease. Neurobiol Dis 172, 105832. * uses XonaChips® (XC150) with human iPSC-differentiated motor neurons.https://doi.org/10.1016/j.nbd.2022.105832
Tags: hiPSC-derived motor neurons, human, motor neuron disease, XC150

Brás, I.C., Khani, M.H., Riedel, D., Parfentev, I., Gerhardt, E., van Riesen, C., Urlaub, H., Gollisch, T., Outeiro, T.F., 2022. Ectosomes and exosomes modulate neuronal spontaneous activity. Journal of Proteomics 269, 104721. * uses Xona’s Silicone Devices (TCND1000) with mouse cortical neuronshttps://doi.org/10.1016/j.jprot.2022.104721
Tags: cortical neurons, mouse, TCND1000

Nella, K.T., Norton, B.M., Chang, H.-T., Heuer, R.A., Roque, C.B., Matsuoka, A.J., 2022. Bridging the electrode–neuron gap: finite element modeling of in vitro neurotrophin gradients to optimize neuroelectronic interfaces in the inner ear. Acta Biomaterialia 151, 360-378.https://doi.org/10.1016/j.actbio.2022.08.035
Tags: hiPSC-derived, human, spiral ganglion neurons, XC450

2021

Loreto, A., Angeletti, C., Gu, W., Osborne, A., Nieuwenhuis, B., Gilley, J., Arthur-Farraj, P., Merlini, E., Amici, A., Luo, Z., Hartley-Tassell, L., Ve, T., Desrochers, L.M., Wang, Q., Kobe, B., Orsomando, G., Coleman, M.P., 2021. Neurotoxin-mediated potent activation of the axon degeneration regulator SARM1. eLife,https://doi.org/10.7554/eLife.72823

Woldegebriel, R., Kvist, J., White, M., Sinkko, M., Hänninen, S., Sainio, M.T., Torregrosa-Munumer, R., Harjuhaahto, S., Huber, N., Herukka, S.-K., Haapasalo, A., Carpen, O., Bassett, A., Ylikallio, E., Sreedharan, J., Tyynismaa, H., 2021. Peripheral neuropathy linked mRNA export factor GANP reshapes gene regulation in human motor neurons. bioRxiv,  * uses XonaChips® (XC450) https://doi.org/10.1101/2021.05.18.444636
Tags: hiPSC-derived motor neurons, human, preprint, XC450

Mao, X., Gu, H., Kim, D., Kimura, Y., Wang, N., Xu, E., Wang, H., Chen, C., Zhang, S., Jia, C., Liu, Y., Bian, H., Karuppagounder, S.S., Jia, L., Ke, X., Chang, M., Li, A., Yang, J., Rastegar, C., Sriparna, M., Ge, P., Brahmachari, S., Kim, S., Zhang, S., Shimoda, Y., Saar, M., Workman, C.J., Vignali, D.A.A., Muller, U.C., Liu, C., Ko, H.S., Dawson, V.L., Dawson, T.M., 2021. Aplp1 and the Aplp1-Lag3 Complex facilitates transmission of pathologic α-synuclein. bioRxiv, 2021.2005.2001.442157.https://doi.org/10.1101/2021.05.01.442157
Tags: cortical neurons, mouse, preprint, TCND1000

Margarita, D.C., Laura, C., Urszula, B., Amandine, G., Natalia, T.E., Isabelle, F., Hossain, I., Daniela, G., Anne, E., Matthias, M., Eline, P.-V., 2021. Mutant huntingtin actively crosses neuromuscular synapses and causes transmission-selective pathology in human myotubes. bioRxiv, 2021.2007.2028.454044.https://doi.org/10.1101/2021.07.28.454044
Tags: co-culture, hiPSC-derived, human, neuromuscular junction (NMJ), preprint, XC450

Hao, J., Wells, M.F., Niu, G., San Juan, I.G., Limone, F., Fukuda, A., Leyton-Jaimes, M.F., Joseph, B., Qian, M., Mordes, D.A., Budnik, B., Dou, Z., Eggan, K., 2021. Loss of TBK1 activity leads to TDP-43 proteinopathy through lysosomal dysfunction in human motor neurons. bioRxiv, 2021.2010.2011.464011.https://doi.org/10.1101/2021.10.11.464011
Tags: human, motor neurons, preprint, SND150

Lee, S., Park, D., Lim, C., Kim, J.-I., Min, K.-T., 2021. Local protein synthesis of mtIF3 regulates mitochondrial translation for axonal development. bioRxiv, 2021.2001.2026.428248.  * uses Xona’s Silicone Devices (RD150) with mouse hippocampal neuronshttps://doi.org/10.1101/2021.01.26.428248
Tags: hippocampal neurons, mouse, preprint, RD150

Bindas, A.J., Kulkarni, S., Koppes, R.A., Koppes, A.N., 2021. Parkinson’s disease and the gut: Models of an emerging relationship. Acta Biomaterialia 132, 325-344. Reviewhttp://doi.org/10.1016/j.actbio.2021.03.071

Atmaramani, R., Veeramachaneni, S., Mogas, L.V., Koppikar, P., Black, B.J., Hammack, A., Pancrazio, J.J., Granja-Vazquez, R., 2021. Investigating the Function of Adult DRG Neuron Axons Using an In Vitro Microfluidic Culture System. Micromachines 12. * uses Xona’s Silicone Devices (SND150)http://doi.org/10.3390/mi12111317
Tags: SND150

Prox, J., Seicol, B., Qi, H., Argall, A., Araya, N., Behnke, N., Guo, L., 2021. Toward living neuroprosthetics: developing a biological brain pacemaker as a living neuromodulatory implant for improving parkinsonian symptoms. Journal of Neural Engineering 18, 046081.http://doi.org/10.1088/1741-2552/ac02dd

Ha, T.-Y., Choi, Y.R., Noh, H.R., Cha, S.-H., Kim, J.-B., Park, S.M., 2021. Age-related increase in caveolin-1 expression facilitates cell-to-cell transmission of α-synuclein in neurons. Molecular Brain 14, 122. * uses Xona’s Silicone Devices (TCND1000) with mouse cortical neurons and compartmentalized α-syn fibrils https://doi.org/10.1186/s13041-021-00834-2 
Tags: cortical neurons, mouse, TCND1000

Siddiq, M.M., Hannila, S.S., Zorina, Y., Nikulina, E., Rabinovich, V., Hou, J., Huq, R., Richman, E.L., Tolentino, R.E., Hansen, J., Velenosi, A., Kwon, B.K., Tsirka, S.E., Maze, I., Sebra, R., Beaumont, K.G., Toro, C.A., Cardozo, C.P., Iyengar, R., Filbin, M.T., 2021. Extracellular histones, a new class of inhibitory molecules of CNS axonal regeneration. Brain Communications, fcab271.* uses Xona’s Silicone Devices (SND150, SND450) with rat DRG neuronshttp://doi.org/10.1093/braincomms/fcab271
Tags: DRG, rat, SND150, SND450

Cai, E., Cheng, Q., Yu, S., Ding, F., 2021. Achyranthes bidentata polypeptide k enhances the survival, growth and axonal regeneration of spinal cord motor neurons in vitro. NeuroReport 32.http://doi.org/10.1097/WNR.0000000000001621

Dauer née Joppe, K., Tatenhorst, L., Caldi Gomes, L., Zhang, S., Parvaz, M., Carboni, E., Roser, A.-E., El DeBakey, H., Bähr, M., Vogel-Mikuš, K., Wang Ip, C., Becker, S., Zweckstetter, M., Lingor, P., 2021. Brain iron enrichment attenuates α-synuclein spreading after injection of preformed fibrils. J Neurochem 159, 554-573.http://doi.org/10.1111/jnc.15461

Pal, A., Kretner, B., Abo-Rady, M., Glaβ, H., Dash, B.P., Naumann, M., Japtok, J., Kreiter, N., Dhingra, A., Heutink, P., Böckers, T.M., Günther, R., Sterneckert, J., Hermann, A., 2021. Concomitant gain and loss of function pathomechanisms in C9ORF72 amyotrophic lateral sclerosis. Life Science Alliance 4, e202000764.  * uses Xona’s Silicone Devices (RD900) with human iPSC-differentiated motor neurons http://doi.org/10.26508/lsa.202000764
Tags: hiPSC-derived motor neurons, human, RD900

Zhang, Y., Li, C., Qin, Y., Cepparulo, P., Millman, M., Chopp, M., Kemper, A., Szalad, A., Lu, X., Wang, L., Zhang, Z.G., 2021. Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer. Journal of Extracellular Vesicles 10, e12073.  * uses Xona’s Silicone Devices (SND150) with mouse adult DRG neurons https://doi.org/10.1002/jev2.12073
Tags: adult, DRG, mouse, SND150

Katiyar, N., Raju, G., Madhusudanan, P., Gopalakrishnan-Prema, V., Shankarappa, S.A., 2021. Neuronal delivery of nanoparticles via nerve fibres in the skin. Sci Rep 11, 2566.  * uses Xona’s Silicone Devices (SND150) with adult rat DRG neuronshttps://doi.org/10.1038/s41598-021-81995-x
Tags: adult, DRG, rat, SND150

Akin, E.J., Alsaloum, M., Higerd, G.P., Liu, S., Zhao, P., Dib-Hajj, F.B., Waxman, S.G., Dib-Hajj, S.D., 2021. Paclitaxel increases axonal localization and vesicular trafficking of Nav1.7. Brain. * uses Xona’s Silicone Devices (DOC450) with rat DRG neuronshttps://doi.org/10.1093/brain/awab113
Tags: DOC450, DRG, rat

Bhattacharyya, R., Black, S.E., Lotlikar, M.S., Fenn, R.H., Jorfi, M., Kovacs, D.M., Tanzi, R.E., 2021. Axonal generation of amyloid-β from palmitoylated APP in mitochondria-associated endoplasmic reticulum membranes. Cell Rep 35, 109134. * uses XonaChips® (XC150, XC450) with human NPCs cultured in 3D using Matrigel®https://doi.org/10.1016/j.celrep.2021.109134
Tags: 3D, human, Matrigel, NPC, XC150, XC450

Li, Yihang and Pazyra-Murphy, Maria F. and Avizonis, Daina and de Sa Tavares Russo, Mariana and Tang, Sophia and Bergholz, Johann S. and Jiang, Tao and Zhao, Jean J. and Zhu, Jian and Ko, Kwang Woo and Milbrandt, Jeffrey and DiAntonio, Aaron and Segal, Rosalind A., Activation of Sarm1 Produces cADPR to Increase Intra-Axonal Calcium and Promote Axon Degeneration in CIPN. Neuron * uses XonaChips® (XC900)http://dx.doi.org/10.2139/ssrn.3830010
Tags: XC900

Güner, F., Pozner, T., Krach, F., Prots, I., Loskarn, S., Schlötzer-Schrehardt, U., Winkler, J., Winner, B., Regensburger, M., 2021. Axon-Specific Mitochondrial Pathology in SPG11 Alpha Motor Neurons. Frontiers in Neuroscience 15. * uses Xona’s Silicone Devices (SND450) with human iPSC-differentiated motor neuron progenitors and human cerebellar astrocytes co-cultures.https://doi.org/10.3389/fnins.2021.680572
Tags: astrocytes, co-culture, hiPSC-derived, hiPSC-derived motor neurons, human, motor neurons, SND450

Fligor, C.M., Lavekar, S.S., Harkin, J., Shields, P.K., VanderWall, K.B., Huang, K.-C., Gomes, C., Meyer, J.S., 2021. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. Stem Cell Reports. * uses XonaChips® (XC450) with hPSC-derived retinal ganglion neurons (RGCs) purified from retinal organoidshttps://doi.org/10.1016/j.stemcr.2021.05.009
Tags: hPSC-derived, retinal ganglion cells, retinal organoid, XC450

Lie, P.P.Y., Yang, D.-S., Stavrides, P., Goulbourne, C.N., Zheng, P., Mohan, P.S., Cataldo, A.M., Nixon, R.A., 2021. Post-Golgi carriers, not lysosomes, confer lysosomal properties to pre-degradative organelles in normal and dystrophic axons. Cell Rep 35, 109034. * uses Xona’s Silicone Devices (RD450) with embryonic mouse cortical neurons.https://doi.org/10.1016/j.celrep.2021.109034
Tags: cortical neurons, embryonic, mouse, RD450

van Erp, S., van Berkel, A.A., Feenstra, E.M., Sahoo, P.K., Wagstaff, L.J., Twiss, J.L., Fawcett, J.W., Eva, R., ffrench-Constant, C., 2021. Age-related loss of axonal regeneration is reflected by the level of local translation. Exp Neurol 339, 113594. * uses Xona’s Silicone Devices (RD450) with hESC-differentiated neurons.https://doi.org/10.1016/j.expneurol.2020.113594
Tags: hESC-derived, human, RD450

Stoklund Dittlau, K., Krasnow, E.N., Fumagalli, L., Vandoorne, T., Baatsen, P., Kerstens, A., Giacomazzi, G., Pavie, B., Rossaert, E., Beckers, J., Sampaolesi, M., Van Damme, P., Van Den Bosch, L., 2021. Human motor units in microfluidic devices are impaired by FUS mutations and improved by HDAC6 inhibition. Stem Cell Reports 16, 2213-2227. * uses XonaChips® (XC150) and Xona’s Silicone Devices (SND75) with human iPSC-differentiated motor neurons and human mesoangioblasts (MAB)-derived myotubes to create in vitro NMJs.

https://doi.org/10.1016/j.stemcr.2021.03.029 
Tags: hiPSC-derived motor neurons, human, neuromuscular junction (NMJ), SND75, XC150

Stoklund Dittlau, K., Krasnow, E.N., Fumagalli, L., Vandoorne, T., Baatsen, P., Kerstens, A., Giacomazzi, G., Pavie, B., Rossaert, E., Beckers, J., Sampaolesi, M., Van Damme, P., Van Den Bosch, L., 2021. Generation of Human Motor Units with Functional Neuromuscular Junctions in Microfluidic Devices. JoVE, e62959. * uses XonaChips® (XC150) and Xona’s Silicone Devices (SND75) with human iPSC-differentiated motor neurons and human mesoangioblasts (MAB)-derived myotubes to create in vitro NMJs.http://doi.org/10.3791/62959
Tags: hiPSC-derived motor neurons, human, motor neurons, neuromuscular junction (NMJ), SND75, XC150

2020

Sundaramoorthy V, Green D, Locke K, O’Brien CM, Dearnley M, et al. (2020) Novel role of SARM1 mediated axonal degeneration in the pathogenesis of rabies. PLOS Pathogens 16(2): e1008343. * uses Xona’s Silicone Devices (SND450) with mouse cortical and DRG neuronshttps://doi.org/10.1371/journal.ppat.1008343
Tags: cortical neurons, DRG, mouse, SND450

Cristiano Lucci, Raquel Mesquita-Ribeiro, Alex Rathbone, Federico Dajas-Bailador (2020). Spatiotemporal regulation of GSK3β levels by miRNA-26a controls axon development in cortical neurons. Development 147: dev180232 doi: 10.1242/dev.180232 * uses Xona’s Silicone Devices (SND150) with mouse cortical neurons
Tags: cortical neurons, mouse, SND150

Fukuda, Y., Pazyra-Murphy, M.F., Silagi, E.S., Tasdemir-Yilmaz, O.E., Li, Y., Rose, L., Yeoh, Z.C., Vangos, N.E., Geffken, E.A., Seo, H.-S., Adelmant, G., Bird, G.H., Walensky, L.D., Marto, J.A., Dhe-Paganon, S., Segal, R.A., 2020. Binding and transport of SFPQ-RNA granules by KIF5A/KLC1 motors promotes axon survival. Journal of Cell Biology 220. * uses XonaChips® (XC900), XonaPDL™, and Xona’s Silicone Devices (SND450) with rat DRG neuronshttps://doi.org/10.1083/jcb.202005051
Tags: DRG, rat, SND450, XC900, XonaPDL

Wang, T., Li, W., Martin, S., Papadopulos, A., Joensuu, M., Liu, C., Jiang, A., Shamsollahi, G., Amor, R., Lanoue, V., Padmanabhan, P., Meunier, F.A., 2020. Radial contractility of actomyosin rings facilitates axonal trafficking and structural stability. Journal of Cell Biology 219. * uses Xona’s Silicone Devices (RD450 and TCND500) with rat hippocampal neuronshttps://doi.org/10.1083/jcb.201902001
Tags: hippocampal neurons, rat, RD450, TCND500

Fujita, Y., Nakanishi, T., Ueno, M., Itohara, S., Yamashita, T., 2020. Netrin-G1 Regulates Microglial Accumulation along Axons and Supports the Survival of Layer V Neurons in the Postnatal Mouse Brain. Cell Rep 31, 107580. * uses Xona’s Silicone Devices (SND450) with mouse cortical neurons co-cultured with microglia https://doi.org/10.1016/j.celrep.2020.107580
Tags: co-culture, cortical neurons, microglia, mouse, SND450

Aravamudhan, P., Raghunathan, K., Konopka-Anstadt, J., Pathak, A., Sutherland, D.M., Carter, B.D., Dermody, T.S., 2020. Reovirus uses macropinocytosis-mediated entry and fast axonal transport to infect neurons. PLoS pathogens 16, e1008380-e1008380. PMID: 32109948 * uses XonaChips® (XC450) with rat DRG neurons https://www.ncbi.nlm.nih.gov/pubmed/32109948
Tags: DRG, rat, XC450

Leitão, L., Neto, E., Conceição, F., Monteiro, A., Couto, M., Alves, C.J., Sousa, D.M., Lamghari, M., 2020. Osteoblasts are inherently programmed to repel sensory innervation. Bone Research 8, 20. * uses Xona’s Silicone Devices (SND450) with mouse DRG neurons co-cultured with human mesenchymal stem cells (MSC)-differentiated osteoblasts https://doi.org/10.1038/s41413-020-0096-1
Tags: co-culture, DRG, human, mouse, osteoblasts, SND450, stem cells

Cornejo, V.H., Gonzalez, C., Campos, M., Vargas-Saturno, L., Juricic, M.L.A., Miserey-Lenkei, S., Pertusa, M., Madrid, R., Couve, A., 2020. Non-conventional Axonal Organelles Control TRPM8 Ion Channel Trafficking and Peripheral Cold Sensing. Cell Rep 30, 4505-4517 e4505. * uses Xona’s Silicone Devices with mouse trigeminal and DRG neurons https://doi.org/10.1016/j.celrep.2020.03.017
Tags: co-culture, DRG, mouse, SND450, trigeminal

Danastas, K., Cunningham, A.L., Miranda-Saksena, M., 2020. The Use of Microfluidic Neuronal Devices to Study the Anterograde Axonal Transport of Herpes Simplex Virus-1. Methods Mol Biol 2060, 409-418.
Tags: protocol

Sundaramoorthy, V., Godde, N., Farr, R.J., Green, D., Haynes, J.M., Bingham, J., O’Brien, C.M., Dearnley, M., 2020. Modelling Lyssavirus Infections in Human Stem Cell-Derived Neural Cultures. Viruses 12. * uses Xona’s Silicone Devices (SND150) with human iPSC-differentiated neurons
Tags: hiPSC-derived, SND150

Abo-Rady, M., Kalmbach, N., Pal, A., Schludi, C., Janosch, A., Richter, T., Freitag, P., Bickle, M., Kahlert, A.K., Petri, S., Stefanov, S., Glass, H., Staege, S., Just, W., Bhatnagar, R., Edbauer, D., Hermann, A., Wegner, F., Sterneckert, J.L., 2020. Knocking out C9ORF72 Exacerbates Axonal Trafficking Defects Associated with Hexanucleotide Repeat Expansion and Reduces Levels of Heat Shock Proteins. Stem Cell Reports 14, 390-405. * uses Xona’s Silicone Devices with human iPSC-differentiated motor neuronshttps://doi.org/10.1016%2Fj.stemcr.2020.01.010
Tags: hiPSC-derived motor neurons, SND450

Soleilhavoup, C., Travaglio, M., Patrick, K., Garcao, P., Boobalan, E., Adolfs, Y., Spriggs, R.V., Moles-Garcia, E., Dhiraj, D., Oosterveen, T., Ferri, S.L., Abel, T., Brodkin, E.S., Pasterkamp, R.J., Brooks, B.P., Panman, L., 2020. Nolz1 expression is required in dopaminergic axon guidance and striatal innervation. Nat Commun 11, 3111. * uses Xona’s Silicone Devices (SND900) with mouse midbrain and striatum co-cultureshttps://doi.org/10.1038/s41467-020-16947-6
Tags: co-culture, midbrain, mouse, SND900, striatum

Tian, N., Hanson, K.A., Canty, A.J., Vickers, J.C., King, A.E., 2020. Microtubule-dependent processes precede pathological calcium influx in excitotoxin-induced axon degeneration. J Neurochem 152, 542-555. * uses Xona’s Silicone Devices (SND450) with mouse cortical neuronshttps://doi.org/10.1111/jnc.14909
Tags: cortical neurons, mouse, SND450

Mak, H.K., Yung, J.S.Y., Weinreb, R.N., Ng, S.H., Cao, X., Ho, T.Y.C., Ng, T.K., Chu, W.K., Yung, W.H., Choy, K.W., Wang, C.C., Lee, T.L., Leung, C.K., 2020. MicroRNA-19a-PTEN Axis Is Involved in the Developmental Decline of Axon Regenerative Capacity in Retinal Ganglion Cells. Mol Ther Nucleic Acids 21, 251-263.* uses Xona’s Silicone Devices (RD450) with mouse retinal ganglion cellshttp://doi.org/10.1016/j.omtn.2020.05.031
Tags: mouse, RD450, retinal ganglion cells

Nagano, S., Jinno, J., Abdelhamid, R.F., Jin, Y., Shibata, M., Watanabe, S., Hirokawa, S., Nishizawa, M., Sakimura, K., Onodera, O., Okada, H., Okada, T., Saito, Y., Takahashi-Fujigasaki, J., Murayama, S., Wakatsuki, S., Mochizuki, H., Araki, T., 2020. TDP-43 transports ribosomal protein mRNA to regulate axonal local translation in neuronal axons. Acta Neuropathol 140, 695-713.https://doi.org/10.1007/s00401-020-02205-y 

Watters, O., Connolly, N.M.C., König, H.-G., Düssmann, H., Prehn, J.H.M., 2020. AMPK Preferentially Depresses Retrograde Transport of Axonal Mitochondria during Localized Nutrient Deprivation. The Journal of Neuroscience 40, 4798.http://doi.org/10.1523/JNEUROSCI.2067-19.2020

Fujita, Y., Yamashita, T., 2020. Protocol for Co-culture of Microglia with Axons. STAR Protocols, 100111.  * uses Xona’s Silicone Devices (SND450) with mouse co-cultures with cortical neurons and microgliahttps://doi.org/10.1016/j.xpro.2020.100111
Tags: co-culture, cortical neurons, mouse, SND450

Aravamudhan, P., Raghunathan, K., Dermody, T.S., 2020. Confocal Microscopy of Reovirus Transport in Living Dorsal Root Ganglion Neurons. Bio Protoc 10, e3825.  * uses XonaChips® (XC450) with rat DRG neuronshttp://doi.org/10.21769/BioProtoc.3825
Tags: DRG, rat, XC450

Yezid, Hocine; Lay, Christian T.; Pannhorst, Katrin; Chowdhury, Shafiqul I. 2020. “Two Separate Tyrosine-Based YXXL/Φ Motifs within the Glycoprotein E Cytoplasmic Tail of Bovine Herpesvirus 1 Contribute in Virus Anterograde Neuronal Transport” Viruses 12, no. 9: 1025.https://doi.org/10.3390/v12091025

Wu, Q., Shaikh, M.A., Meymand, E.S., Zhang, B., Luk, K.C., Trojanowski, J.Q., Lee, V.M.Y., 2020. Neuronal activity modulates alpha-synuclein aggregation and spreading in organotypic brain slice cultures and in vivo. Acta Neuropathol 140, 831-849.http://doi.org/10.1007/s00401-020-02227-6

Zhang, Y., Qin, Y., Chopp, M., Li, C., Kemper, A., Liu, X., Wang, X., Zhang, L., Zhang Zheng, G., 2020. Ischemic Cerebral Endothelial Cell–Derived Exosomes Promote Axonal Growth. Stroke 51, 3701-3712. * uses Xona’s Silicone Devices (SND450, TCND500) with rat cortical neurons and exosomes isolated from cerebral endothelial cells (CECs)http://doi.org/10.1161/STROKEAHA.120.031728
Tags: cortical neurons, rat, SND450, TCND500

Banh, R.S., Biancur, D.E., Yamamoto, K., Sohn, A.S.W., Walters, B., Kuljanin, M., Gikandi, A., Wang, H., Mancias, J.D., Schneider, R.J., Pacold, M.E., Kimmelman, A.C., 2020. Neurons Release Serine to Support mRNA Translation in Pancreatic Cancer. Cell 183, 1202-1218.e1225.https://doi.org/10.1016/j.cell.2020.10.016

Lomoio S, Willen R, Kim W, Ho KZ, Robinson EK, Prokopenko D, Kennedy ME, Tanzi RE, Tesco G., 2020. Gga3 deletion and a GGA3 rare variant associated with late onset Alzheimer’s disease trigger BACE1 accumulation in axonal swellings. Sci Transl Med.  Nov 18;12(570):eaba1871. * uses Xona’s Silicone Devices (SND450) with mouse hippocampal neuronshttp://doi.org/10.1126/scitranslmed.aba1871
Tags: hippocampal neurons, mouse, SND450

Liu, M., Pi, H., Xi, Y., Wang, L., Tian, L., Chen, M., Xie, J., Deng, P., Zhang, T., Zhou, C., Liang, Y., Zhang, L., He, M., Lu, Y., Chen, C., Yu, Z., Zhou, Z., 2020. KIF5A-dependent axonal transport deficiency disrupts autophagic flux in trimethyltin chloride-induced neurotoxicity. Autophagy 17, 903-924.  * uses Xona’s Silicone Devices (SND450)https://doi.org/10.1080/15548627.2020.1739444
Tags: SND450

2019

Li, C., Zhang, Y., Levin, A.M., Fan, B.Y., Teng, H., Ghannam, M.M., Chopp, M., Zhang, Z.G., 2019. Distal Axonal Proteins and Their Related MiRNAs in Cultured Cortical Neurons. Mol Neurobiol. Apr;56(4):2703-2713. doi: 10.1007/s12035-018-1266-7. * uses Xona’s Silicone Devices (SND450) with rat cortical neurons https://www.ncbi.nlm.nih.gov/pubmed/30054858
Tags: cortical neurons, rat, SND450

Fantuzzo, J.A., Hart, R.P., Zahn, J.D., Pang, Z.P., 2019. Compartmentalized Devices as Tools for Investigation of Human Brain Network Dynamics. Dev Dyn 248, 65-77. doi: 10.1002/dvdy.2466 * Review paperhttps://www.ncbi.nlm.nih.gov/pubmed/30117633
Tags: review

Klim, J.R., Williams, L.A., Limone, F., Guerra San Juan, I., Davis-Dusenbery, B.N., Mordes, D.A., Burberry, A., Steinbaugh, M.J., Gamage, K.K., Kirchner, R., Moccia, R., Cassel, S.H., Chen, K., Wainger, B.J., Woolf, C.J., Eggan, K., 2019. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci. Feb;22(2):167-179. doi: 10.1038/s41593-018-0300-4. * uses Xona’s Silicone Devices (SND150) with human stem cell (iPSC and ESC) derived motor neurons https://www.ncbi.nlm.nih.gov/pubmed/30643292
Tags: human, motor neurons, SND150, stem cells

Zhu, S., Zhu, J., Zhen, G., Hu, Y., An, S., Li, Y., Zheng, Q., Chen, Z., Yang, Y., Wan, M., Skolasky, R.L., Cao, Y., Wu, T., Gao, B., Yang, M., Gao, M., Kuliwaba, J., Ni, S., Wang, L., Wu, C., Findlay, D., Eltzschig, H.K., Ouyang, H.W., Crane, J., Zhou, F.-Q., Guan, Y., Dong, X., Cao, X., 2019. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest. 2019 Mar 1;129(3):1076-1093. doi: 10.1172/JCI121561 * uses Xona’s Silicone Devices (SND450) with mouse DRG neuronshttps://www.ncbi.nlm.nih.gov/pubmed/30530994
Tags: DRG, mouse, SND450

Wang, L., Chopp, M., Lu, X., Szalad, A., Jia, L., Liu, X.S., Wu, K.-H., Lu, M., Zhang, Z.G., 2019. miR-146a mediates thymosin β4 induced neurovascular remodeling of diabetic peripheral neuropathy in type-II diabetic mice. Brain Res. Mar 15;1707:198-207. doi: 10.1016/j.brainres.2018.11.039 * uses Xona’s Silicone Devices (Cat. # not specified) with rat DRG neurons https://www.ncbi.nlm.nih.gov/pubmed/30500399
Tags: DRG, rat, SND450

Bieri, G., Brahic, M., Bousset, L., Couthouis, J., Kramer, N.J., Ma, R., Nakayama, L., Monbureau, M., Defensor, E., Schüle, B., Shamloo, M., Melki, R., Gitler, A.D., 2019. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons.  Acta Neuropathol. 2019 Mar 29. doi: 10.1007/s00401-019-01995-0. * uses Xona’s Silicone Devices (SND450) with human stem cell derived neurons https://www.ncbi.nlm.nih.gov/pubmed/30927072
Tags: human, SND450, stem cells

Kamande, J.W., Nagendran, T., Harris, J., Taylor, A.M., 2019. Multi-compartment Microfluidic Device Geometry and Covalently Bound Poly-D-Lysine Influence Neuronal Maturation. Front. Bioeng. Biotechnol. | doi: 10.3389/fbioe.2019.00084. * uses Xona’s Silicone Devices (SND450, DOC450) with human stem cell derived glutamatergic neurons **Original research authored by Xona scientists** https://www.frontiersin.org/articles/10.3389/fbioe.2019.00084/abstract
Tags: DOC450, glutamatergic, hiPSC-derived, human, SND450, Xona author

Zheng, Y., Zhang, X., Wu, X., Jiang, L., Ahsan, A., Ma, S., Xiao, Z., Han, F., Qin, Z.-H., Hu, W., Chen, Z., 2019. Somatic autophagy of axonal mitochondria in ischemic neurons. The Journal of cell biology 218, 1891-1907. doi: 10.1083/jcb.201804101 * uses Xona’s Silicone Devices (RD450) with mouse cortical neurons https://www.ncbi.nlm.nih.gov/pubmed/30979799
Tags: cortical neurons, mouse, RD450

Pu, H., Shi, Y., Zhang, L., Lu, Z., Ye, Q., Leak, R.K., Xu, F., Ma, S., Mu, H., Wei, Z., Xu, N., Xia, Y., Hu, X., Hitchens, T.K., Bennett, M.V.L., Chen, J., 2019. Protease-independent action of tissue plasminogen activator in brain plasticity and neurological recovery after ischemic stroke. Proceedings of the National Academy of Sciences 116, 9115, doi: 10.1073/pnas.1821979116.* uses Xona’s Silicone Devices (SND450) with rat cortical neurons https://www.ncbi.nlm.nih.gov/pubmed/30996120
Tags: cortical neurons, rat, SND450

Paranjape, S. R., Nagendran, T., Poole, V., Harris, J., Taylor, A. M. (2019). Compartmentalization of Human Stem Cell-Derived Neurons within Pre-Assembled Plastic Microfluidic Chips J. Vis. Exp. (147), e59250, doi:10.3791/59250 (2019). * uses XonaChips® (XC150, XC450, XC900) with human stem cell derived glutamatergic neurons **authored by Xona scientists https://www.jove.com/video/59250/compartmentalization-human-stem-cell-derived-neurons-within-pre?status=a61256k
Tags: glutamatergic, hiPSC-derived, human, protocol, XC150, XC450, XC900, Xona author

Yan, K., Liu, J., Guan, X., Yin, Y. X., Peng, H., Chen, H. C., & Liu, Z. F. (2019). The Carboxyl Terminus of Tegument Protein pUL21 Contributes to Pseudorabies Virus Neuroinvasion. Journal of virology, 93(7), e02052-18. https://doi.org/10.1128/JVI.02052-18 * uses Xona’s Silicone Devices (SND450) with chicken DRG neurons https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6430533/
Tags: chicken, DRG, SND450

Hixon, A. M., Clarke, P., & Tyler, K. L. (2019). Contemporary Circulating Enterovirus D68 Strains Infect and Undergo Retrograde Axonal Transport in Spinal Motor Neurons Independent of Sialic Acid. Journal of virology93(16), e00578-19. https://doi.org/10.1128/JVI.00578-19 * uses Xona’s Silicone Devices (RD450) with human iPSC-derived motor neurons https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675884/
Tags: hiPSC-derived motor neurons, human, RD450

Desforges, M., Le Coupanec, A., Dubeau, P., Bourgouin, A., Lajoie, L., Dubé, M., & Talbot, P. J. (2019). Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System?. Viruses12(1), 14. https://doi.org/10.3390/v12010014 * uses XonaChips® (XC150) with murine mixed neurons https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020001/
Tags: cortical neurons, mouse, rat, XC150

Nagendran, T. & Taylor, A.M. (2019). Unique Axon-to-Soma Signaling Pathways Mediate Dendritic Spine Loss and Hyper-Excitability Post-axotomy. Front. Cell. Neurosci., 13(431), https://doi.org/10.3389/fncel.2019.00431 * uses Silicone Devices (SND900) with rat hippocampal neurons **Original research authored by Xona scientists** https://www.frontiersin.org/articles/10.3389/fncel.2019.00431/full
Tags: hippocampal neurons, rat, SND900, Xona author

Vysokov, N., McMahon, S.B., Raouf, R., 2019. The role of NaV channels in synaptic transmission after axotomy in a microfluidic culture platform. Sci Rep 9, 12915. DOI: 10.1038/s41598-019-49214-w * uses Xona’s Silicone Devices (TCND1000) with rat DRG neurons and dorsal horn co-culture https://www.nature.com/articles/s41598-019-49214-w
Tags: co-culture, dorsal horn, DRG, rat, TCND1000

Shekari, A. & Fahnestock, M. (2019). Retrograde axonal transport of BDNF and proNGF diminishes with age in basal forebrain cholinergic neurons. Neurobiol. Aging, 84: 131-140, https://doi.org/10.1016/j.neurobiolaging.2019.07.018 * uses XonaChips® (XC450) with rat basal forebrain or cortical neurons https://www.ncbi.nlm.nih.gov/pubmed/31574357
Tags: basal forebrain cholinergic neurons, cortical neurons, rat, XC450

Nijssen, J., Aguila, J. and Hedlund, E. (2019). Axon-seq for in Depth Analysis of the RNA Content of Neuronal Processes. Bio-protocol 9(14): e3312. DOI: 10.21769/BioProtoc.3312. * uses Xona’s Silicone Devices (SND150, SND450, SND900) with mouse and human stem cell derived motor neurons https://bio-protocol.org/e3312
Tags: human, motor neurons, mouse, protocol, SND150, SND450, SND900, stem cells

Barber, A.C., Evans, R.S., Nieuwenhuis, B., Pearson, C.S., Fuchs, J., MacQueen, A.R., Erp, S.v., Haenzi, B., Hulshof, L.A., Osborne, A., Conceicao, R., Deshpande, S.S., Cave, J., ffrench-Constant, C., Smith, P.D., Okkenhaug, K., Eickholt, B.J., Martin, K.R., Fawcett, J.W., Eva, R., 2019. PI 3-kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS. bioRxiv, 787994. * uses Xona’s Silicone Devices (SND150) with rat DRG neurons https://doi.org/10.1101/787994
Tags: DRG, rat, SND150

Gruner, H.N., Bae, B., Lynch, M., Oliver, D., So, K., Mastick, G.S., Yan, W., Miura, P., 2019. Precise removal of Calm1 long 3′ UTR isoform by CRISPR-Cas9 genome editing impairs dorsal root ganglion development in mice. bioRxiv, 553990. * uses Xona’s Silicone Devices (SND450) with mouse DRG neurons https://doi.org/10.1101/553990
Tags: DRG, mouse, SND450

Teotia, P., Van Hook, M.J., Fischer, D., Ahmad, I., 2019. Human retinal ganglion cell axon regeneration by recapitulating developmental mechanisms: effects of recruitment of the mTOR pathway. Development 146, dev178012. * uses Xona’s Silicone Devices (SND450) with human retinal ganglion cells  https://doi.org/10.1242/dev.178012
Tags: human, retinal ganglion cells, SND450

2018

Jia, L., M. Chopp, L. Wang, X. Lu, Y. Zhang, A. Szalad and Z. G. Zhang, 2018. MiR-34a Regulates Axonal Growth of Dorsal Root Ganglia Neurons by Targeting FOXP2 and VAT1 in Postnatal and Adult Mouse. Mol Neurobiol 55(12): 9089-9099.https://doi.org/10.1007/s12035-018-1047-3

Jocher, G., S. H. Mannschatz, M. Offterdinger and R. Schweigreiter, 2018. Microfluidics of Small-Population Neurons Allows for a Precise Quantification of the Peripheral Axonal Growth State. Front Cell Neurosci 12: 166. * uses TCND500 silicone devices with mouse sensory DRG and trigeminal neurons. https://pubmed.ncbi.nlm.nih.gov/29962939/
Tags: DRG, Matrigel, mouse, protocol, sensory neurons, TCND500, trigeminal

Jia, L., M. Chopp, L. Wang, X. Lu, A. Szalad and Z. G. Zhang, 2018. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy. Faseb j 32(12): fj201800597R.https://doi.org/10.1096/fj.201800597r

Van Laar, V. S., B. Arnold, E. H. Howlett, M. J. Calderon, C. M. St Croix, J. T. Greenamyre, L. H. Sanders and S. B. Berman, 2018. Evidence for Compartmentalized Axonal Mitochondrial Biogenesis: Mitochondrial DNA Replication Increases in Distal Axons As an Early Response to Parkinson's Disease-Relevant Stress. J Neurosci 38(34): 7505-7515.https://doi.org/10.1523/jneurosci.0541-18.2018
Tags: cortical neurons, rat, SND450, SND900

Nagendran, T., V. Poole, J. Harris and A. M. Taylor, 2018. Use of Pre-Assembled Plastic Microfluidic Chips for Compartmentalizing Primary Murine Neurons. Journal of visualized experiments : JoVE(141). * uses XC150, XC450, XC900 XonaChips with rat hippocampal neurons. https://dx.doi.org/10.3791/58421
Tags: hippocampal neurons, mouse, protocol, rat, XC150, XC450, XC900, Xona author

Nijssen, J., Aguila, J., Hoogstraaten, R., Kee, N., Hedlund, E., 2018. Axon-Seq Decodes the Motor Axon Transcriptome and Its Modulation in Response to ALS. Stem Cell Reports 11, 1565-1578. * uses SND150 silicone devices with human motor neurons. https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(18)30473-9
Tags: ALS, human, motor neurons, SND150

Naumann, M., Pal, A., Goswami, A., Lojewski, X., Japtok, J., Vehlow, A., Naujock, M., Günther, R., Jin, M., Stanslowsky, N., Reinhardt, P., Sterneckert, J., Frickenhaus, M., Pan-Montojo, F., Storkebaum, E., Poser, I., Freischmidt, A., Weishaupt, J.H., Holzmann, K., Troost, D., Ludolph, A.C., Boeckers, T.M., Liebau, S., Petri, S., Cordes, N., Hyman, A.A., Wegner, F., Grill, S.W., Weis, J., Storch, A., Hermann, A., 2018. Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nature Communications 9, 335. * uses Xona’s Silicone Devices (RD900) with human iPSC-differentiated motor neuronshttps://doi.org/10.1038/s41467-017-02299-1
Tags: hiPSC-derived motor neurons, human, RD900

2017

Nagendran, T., R. S. Larsen, R. L. Bigler, S. B. Frost, B. D. Philpot, R. J. Nudo and A. M. Taylor, 2017. Distal axotomy enhances retrograde presynaptic excitability onto injured pyramidal neurons via trans-synaptic signaling. Nature Communications 8(1): 625.https://doi.org/10.1038/s41467-017-00652-y
Tags: hippocampal neurons, rat, SND450, SND900, Xona author

2016

Miranda-Saksena, M., A. Boadle Ross, J. Diefenbach Russell and L. Cunningham Anthony, 2016. Dual Role of Herpes Simplex Virus 1 pUS9 in Virus Anterograde Axonal Transport and Final Assembly in Growth Cones in Distal Axons. Journal of Virology 90(5): 2653-2663.https://doi.org/10.1128/jvi.03023-15

Morley, S. J., Y. Qi, L. Iovino, L. Andolfi, D. Guo, N. Kalebic, L. Castaldi, C. Tischer, C. Portulano, G. Bolasco, K. Shirlekar, C. M. Fusco, A. Asaro, F. Fermani, M. Sundukova, U. Matti, L. Reymond, A. De Ninno, L. Businaro, K. Johnsson, M. Lazzarino, J. Ries, Y. Schwab, J. Hu and P. A. Heppenstall, 2016. Acetylated tubulin is essential for touch sensation in mice. eLife 5: e20813.https://doi.org/10.7554/eLife.20813

Westergard, T., Jensen, Brigid K., Wen, X., Cai, J., Kropf, E., Iacovitti, L., Pasinelli, P., Trotti, D., 2016. Cell-to-Cell Transmission of Dipeptide Repeat Proteins Linked to C9orf72-ALS/FTD. Cell Reports 17, 645-652. * uses Xona’s Silicone (PDMS) Devices (SND150) with primary rat cortical neuronshttps://doi.org/10.1016/j.celrep.2016.09.032
Tags: cortical neurons, primary, rat, SND150

2015

Calafate, S., A. Buist, K. Miskiewicz, V. Vijayan, G. Daneels, B. de Strooper, J. de Wit, P. Verstreken and D. Moechars, 2015. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation. Cell Reports 11(8): 1176-1183.https://doi.org/10.1016/j.celrep.2015.04.043

2014

Tran, Hien T., Charlotte H.-Y. Chung, M. Iba, B. Zhang, John Q. Trojanowski, Kelvin C. Luk and Virginia M. Y. Lee, 2014. alpha-Synuclein Immunotherapy Blocks Uptake and Templated Propagation of Misfolded alpha-Synuclein and Neurodegeneration. Cell Reports 7(6): 2054-2065.https://doi.org/10.1016/j.celrep.2014.05.033

2011

Poon, W. W., M. Blurton-Jones, C. H. Tu, L. M. Feinberg, M. A. Chabrier, J. W. Harris, N. L. Jeon and C. W. Cotman, 2011. beta-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging 32(5): 821-833.https://doi.org/10.1016/j.neuron.2009.02.010

2010

Taylor, A. M., D. C. Dieterich, H. T. Ito, S. A. Kim and E. M. Schuman, 2010. Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron 66(1): 57-68.https://doi.org/10.1016/j.neuron.2010.03.022
Tags: hippocampal neurons, microfluidic local perfusion device, primary, rat, SND150, SND450, SND900, uLP, Xona author

2009

Shin, H. S., H. J. Kim, S. J. Sim and N. L. Jeon, 2009. Shear Stress Effect on Transfection of Neurons Cultured in Microfluidic Devices. Journal of Nanoscience and Nanotechnology 9(12): 7330-7335.https://doi.org/10.1166/jnn.2009.1769

Park, J. W., H. J. Kim, J. H. Byun, H. R. Ryu and N. L. Jeon, 2009. Novel microfluidic platform for culturing neurons: Culturing and biochemical analysis of neuronal components. Biotechnology Journal 4(11): 1573-1577.https://doi.org/10.1002/biot.200900159

Hengst, U., A. Deglincerti, H. J. Kim, N. L. Jeon and S. R. Jaffrey, 2009. Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nat Cell Biol 11(8): 1024-1030.https://doi.org/10.1038/ncb1916

Yang, Y., O. Gozen, A. Watkins, I. Lorenzini, A. Lepore, Y. Gao, S. Vidensky, J. Brennan, D. Poulsen, J. Won Park, N. Li Jeon, M. B. Robinson and J. D. Rothstein, 2009. Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron 61(6): 880-894.https://doi.org/10.1016/j.neuron.2009.02.010

Taylor, A. M., N. C. Berchtold, V. M. Perreau, C. H. Tu, N. Li Jeon and C. W. Cotman, 2009. Axonal mRNA in uninjured and regenerating cortical mammalian axons. The Journal of Neuroscience 29(15): 4697-4707.https://doi.org/10.1523/jneurosci.6130-08.2009
Tags: cortical neurons, injury, rat, SND900, Xona author

2008

Liu, W. W., J. Goodhouse, N. L. Jeon and L. W. Enquist, 2008. A microfluidic chamber for analysis of neuron-to-cell spread and axonal transport of an alpha-herpesvirus. PloS one 3(6): e2382-e2382.https://doi.org/10.1371/journal.pone.0002382

2006

Taylor, A. M., S. W. Rhee and N. L. Jeon, 2006. Microfluidic chambers for cell migration and neuroscience research. Methods Mol Biol 321: 167-177.https://doi.org/10.1385/1-59259-997-4:167
Tags: hippocampal neurons, rat, Xona author

Park, J. W., B. Vahidi, A. M. Taylor, S. W. Rhee and N. L. Jeon, 2006. Microfluidic culture platform for neuroscience research. Nature protocols 1(4): 2128-2136.https://doi.org/10.1038/nprot.2006.316
Tags: hippocampal neurons, rat

2005

Taylor, A. M., M. Blurton-Jones, S. W. Rhee, D. H. Cribbs, C. W. Cotman and N. L. Jeon, 2005. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nature Methods 2(8): 599-605.https://doi.org/10.1038/nmeth777
Tags: hippocampal neurons, rat, Xona author

2003

Taylor, A. M., S. W. Rhee, C. H. Tu, D. H. Cribbs, C. W. Cotman and N. L. Jeon, 2003. Microfluidic Multicompartment Device for Neuroscience Research. Langmuir 19(5): 1551-1556.      https://doi.org/10.1021/la026417v
Tags: hippocampal neurons, rat, Xona author

XONA takes pride in offering comprehensive customer support.

CUSTOMER SERVICE HOURS

Mon – Fri
10 AM to 5 PM US Eastern

Xona Microfluidics® is closed all U.S. Holidays

Follow Xona

Contact


Email Xona

Direct
951-553-6400 Phone

International Customers: Please contact Xona through our online form or by email if you would like to arrange a time to speak by phone.

Subscribe To Our Newsletter

WordPress Image Lightbox Plugin